The role of dolichol phosphate in the synthesis of N-glycosidically linked oligosaccharides of glycoproteins is well documented (see Refs. 1 and 2 for recent reviews). These glycoproteins possess a common core region ( 2 N-acetylglucosamine and at least 3 mannose residues) synthesized via the dolichol phosphate pathway. An oligosaccharide is preformed on dolichol phosphate, transferred to an asparagine residue in the protein, and then extensively modified to yield a heterogeneous population of N-linked oligosaccharides.Another class of glycoconjugates, composed of most of the proteoglycans, also contains a core oligosaccharide structure. This core is a tetrasaccharide (glucuronic acid-galactose-gaGrants 5R01 NS15775-02 and AM-05816. This paper is part of the
Hydrodynamic theories effectively describe many-body systems out of equilibrium in terms of a few macroscopic parameters. However, such parameters are difficult to determine from microscopic information. Seldom is this challenge more apparent than in active matter, where the hydrodynamic parameters are in fact fields that encode the distribution of energy-injecting microscopic components. Here, we use active nematics to demonstrate that neural networks can map out the spatiotemporal variation of multiple hydrodynamic parameters and forecast the chaotic dynamics of these systems. We analyze biofilament/molecular-motor experiments with microtubule/kinesin and actin/myosin complexes as computer vision problems. Our algorithms can determine how activity and elastic moduli change as a function of space and time, as well as adenosine triphosphate (ATP) or motor concentration. The only input needed is the orientation of the biofilaments and not the coupled velocity field which is harder to access in experiments. We can also forecast the evolution of these chaotic many-body systems solely from image sequences of their past using a combination of autoencoders and recurrent neural networks with residual architecture. In realistic experimental setups for which the initial conditions are not perfectly known, our physics-inspired machine-learning algorithms can surpass deterministic simulations. Our study paves the way for artificial-intelligence characterization and control of coupled chaotic fields in diverse physical and biological systems, even in the absence of knowledge of the underlying dynamics.
The proteins that make up the actin cytoskeleton can self-assemble into a variety of structures. In vitro experiments and coarse-grained simulations have shown that the actin crosslinking proteins α-actinin and fascin segregate into distinct domains in single actin bundles with a molecular size-dependent competition-based mechanism. Here, by encapsulating actin, α-actinin, and fascin in giant unilamellar vesicles (GUVs), we show that physical confinement can cause these proteins to form much more complex structures, including rings and asters at GUV peripheries and centers; the prevalence of different structures depends on GUV size. Strikingly, we found that α-actinin and fascin self-sort into separate domains in the aster structures with actin bundles whose apparent stiffness depends on the ratio of the relative concentrations of α-actinin and fascin. The observed boundary-imposed effect on protein sorting may be a general mechanism for creating emergent structures in biopolymer networks with multiple crosslinkers.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.