Transactional memory provides a new concurrency control mechanism that avoids many of the pitfalls of lock-based synchronization. High-performance software transactional memory (STM) implementations thus far provide weak atomicity: Accessing shared data both inside and outside a transaction can result in unexpected, implementation-dependent behavior. To guarantee isolation and consistent ordering in such a system, programmers are expected to enclose all shared-memory accesses inside transactions.A system that provides strong atomicity guarantees isolation even in the presence of threads that access shared data outside transactions. A strongly-atomic system also orders transactions with conflicting non-transactional memory operations in a consistent manner.In this paper, we discuss some surprising pitfalls of weak atomicity, and we present an STM system that avoids these problems via strong atomicity. We demonstrate how to implement nontransactional data accesses via efficient read and write barriers, and we present compiler optimizations that further reduce the overheads of these barriers. We introduce a dynamic escape analysis that differentiates private and public data at runtime to make barriers cheaper and a static not-accessed-in-transaction analysis that removes many barriers completely. Our results on a set of Java programs show that strong atomicity can be implemented efficiently in a high-performance STM system.
As memory transactions have been proposed as a languagelevel replacement for locks, there is growing need for welldefined semantics. In contrast to database transactions, transaction memory (TM) semantics are complicated by the fact that programs may access the same memory locations both inside and outside transactions. Strongly atomic semantics, where non-transactional accesses are treated as implicit single-operation transactions, remain difficult to provide without specialized hardware support or significant performance overhead. As an alternative, many in the community have informally proposed that a single global lock semantics [18,10], where transaction semantics are mapped to those of regions protected by a single global lock, provide an intuitive and efficiently implementable model for programmers.In this paper, we explore the implementation and performance implications of single global lock semantics in a weakly atomic STM from the perspective of Java, and we discuss why even recent STM implementations fall short of these semantics. We describe a new weakly atomic Java STM implementation that provides single global lock semantics while permitting concurrent execution, but we show that this comes at a significant performance cost. We also propose and implement various alternative semantics that loosen single lock requirements while still providing strong guarantees. We compare our new implementations to previous ones, including a strongly atomic STM. [24]
Transactional memory provides a new concurrency control mechanism that avoids many of the pitfalls of lock-based synchronization. High-performance software transactional memory (STM) implementations thus far provide weak atomicity : Accessing shared data both inside and outside a transaction can result in unexpected, implementation-dependent behavior. To guarantee isolation and consistent ordering in such a system, programmers are expected to enclose all shared-memory accesses inside transactions. A system that provides strong atomicity guarantees isolation even in the presence of threads that access shared data outside transactions. A strongly-atomic system also orders transactions with conflicting non-transactional memory operations in a consistent manner. In this paper, we discuss some surprising pitfalls of weak atomicity, and we present an STM system that avoids these problems via strong atomicity. We demonstrate how to implement non-transactional data accesses via efficient read and write barriers, and we present compiler optimizations that further reduce the overheads of these barriers. We introduce a dynamic escape analysis that differentiates private and public data at runtime to make barriers cheaper and a static not-accessed-in-transaction analysis that removes many barriers completely. Our results on a set of Java programs show that strong atomicity can be implemented efficiently in a high-performance STM system.
Abstract:The theoretical study of quantum computation has yielded efficient algorithms for some traditionally hard problems.
The theoretical study of quantum computation has yielded efficient algorithms for some traditionally hard problems. Correspondingly, experimental work on the underlying physical implementation technology has progressed steadily. However, almost no work has yet been done which explores the architecture design space of large scale quantum computing systems. In this paper, we present a set of tools that enable the quantitative evaluation of architectures for quantum computers. The infrastructure we created comprises a complete compilation and simulation system for computers containing thousands of quantum bits. We begin by compiling complete algorithms into a quantum instruction set. This ISA enables the simple manipulation of quantum state. Another tool we developed automatically transforms quantum software into an equivalent, fault-tolerant version required to operate on real quantum devices. Next, our infrastructure transforms the ISA into a set of low-level micro architecture specific control operations. In the future, these operations can be used to directly control a quantum computer. For now, our simulation framework quickly uses them to determine the reliability of the application for the target micro architecture. Finally, we propose a simple, regular architecture for ion-trap based quantum computers. Using our software infrastructure , we evaluate the design trade offs of this micro architecture .
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.