We describe the design and use of the Stanford CoreNLP toolkit, an extensible pipeline that provides core natural language analysis. This toolkit is quite widely used, both in the research NLP community and also among commercial and government users of open source NLP technology. We suggest that this follows from a simple, approachable design, straightforward interfaces, the inclusion of robust and good quality analysis components, and not requiring use of a large amount of associated baggage.
We present an overview of the first shared task on language identification on codeswitched data.The shared task included code-switched data from four language pairs: Modern Standard ArabicDialectal Arabic (MSA-DA), MandarinEnglish (MAN-EN), Nepali-English (NEP-EN), and Spanish-English (SPA-EN). A total of seven teams participated in the task and submitted 42 system runs. The evaluation showed that language identification at the token level is more difficult when the languages present are closely related, as in the case of MSA-DA, where the prediction performance was the lowest among all language pairs. In contrast, the language pairs with the higest F-measure where SPA-EN and NEP-EN. The task made evident that language identification in code-switched data is still far from solved and warrants further research.
Abstract-Captchas are designed to be easy for humans but hard for machines. However, most recent research has focused only on making them hard for machines. In this paper, we present what is to the best of our knowledge the first large scale evaluation of captchas from the human perspective, with the goal of assessing how much friction captchas present to the average user.For the purpose of this study we have asked workers from Amazon's Mechanical Turk and an underground captchabreaking service to solve more than 318 000 captchas issued from the 21 most popular captcha schemes (13 images schemes and 8 audio scheme).Analysis of the resulting data reveals that captchas are often difficult for humans, with audio captchas being particularly problematic. We also find some demographic trends indicating, for example, that non-native speakers of English are slower in general and less accurate on English-centric captcha schemes. Evidence from a week's worth of eBay captchas (14,000,000 samples) suggests that the solving accuracies found in our study are close to real-world values, and that improving audio captchas should become a priority, as nearly 1% of all captchas are delivered as audio rather than images. Finally our study also reveals that it is more effective for an attacker to use Mechanical Turk to solve captchas than an underground service.
This study proposes a system to automatically analyze clinical temporal events in a fine-grained level in SemEval-2017. Support vector machine (SVM) and conditional random field (CRF) were implemented in our system for different subtasks, including detecting clinical relevant events and time expression, determining their attributes , and identifying their relations with each other within the document. Domain adaptation was the main challenge this year. Unified Medical Language System was consulted to generalize events specific to each domain. The results showed our system's capability of domain adaptation.
Character n-grams have been identified as the most successful feature in both singledomain and cross-domain Authorship Attribution (AA), but the reasons for their discriminative value were not fully understood. We identify subgroups of character n-grams that correspond to linguistic aspects commonly claimed to be covered by these features: morphosyntax, thematic content and style. We evaluate the predictiveness of each of these groups in two AA settings: a single domain setting and a cross-domain setting where multiple topics are present. We demonstrate that character ngrams that capture information about affixes and punctuation account for almost all of the power of character n-grams as features. Our study contributes new insights into the use of n-grams for future AA work and other classification tasks.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.