A fundamental problem for case-based reasoning systems is how to select relevant prior cases. Numerous strategies have been developed for determining the similarity of prior cases, given full descriptions of the problem at hand, and situation assessment methods have been developed for formulating appropriate initial case descriptions. However, in real-world applications, attempting to determine all relevant features of a new problem before retrieval may be impractical or impossible. Consequently, how to guide retrieval based on partial problem descriptions is an important question for CBR. This paper examines the problem of assessing similarity in partially-described cases. It proposes a set of similarity assessment strategies for handling missing information, evaluates their performance and efficiency on sample data sets, and discusses their tradeoffs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.