Recent research has highlighted the valuable role that coastal and marine ecosystems play in sequestering carbon dioxide (CO2). The carbon (C) sequestered in vegetated coastal ecosystems, specifically mangrove forests, seagrass beds, and salt marshes, has been termed “blue carbon”. Although their global area is one to two orders of magnitude smaller than that of terrestrial forests, the contribution of vegetated coastal habitats per unit area to long‐term C sequestration is much greater, in part because of their efficiency in trapping suspended matter and associated organic C during tidal inundation. Despite the value of mangrove forests, seagrass beds, and salt marshes in sequestering C, and the other goods and services they provide, these systems are being lost at critical rates and action is urgently needed to prevent further degradation and loss. Recognition of the C sequestration value of vegetated coastal ecosystems provides a strong argument for their protection and restoration; however, it is necessary to improve scientific understanding of the underlying mechanisms that control C sequestration in these ecosystems. Here, we identify key areas of uncertainty and specific actions needed to address them.
Mangroves are defined by the presence of trees that mainly occur in the intertidal zone, between land and sea, in the (sub) tropics. The intertidal zone is characterised by highly variable environmental factors, such as temperature, sedimentation and tidal currents. The aerial roots of mangroves partly stabilise this environment and provide a substratum on which many species of plants and animals live. Above the water, the mangrove trees and canopy provide important habitat for a wide range of species. These include birds, insects, mammals and reptiles. Below the water, the mangrove roots are overgrown by epibionts such as tunicates, sponges, algae, and bivalves. The soft substratum in the mangroves forms habitat for various infaunal and epifaunal species, while the space between roots provides shelter and food for motile fauna such as prawns, crabs and fishes. Mangrove litter is transformed into detritus, which partly supports the mangrove food web. Plankton, epiphytic algae and microphytobenthos also form an important basis for the mangrove food web. Due to the high abundance of food and shelter, and low predation pressure, mangroves form an ideal habitat for a variety of animal species, during part or all of their life cycles. As such, mangroves may function as nursery habitats for (commercially important) crab, prawn and fish species, and support offshore fish populations and fisheries. Evidence for linkages between mangroves and offshore habitats by animal migrations is still scarce, but highly needed for management and conservation purposes. Here, we firstly reviewed the habitat function of mangroves by common taxa of terrestrial and marine animals. Secondly, we reviewed the literature with regard to the degree of interlinkage between mangroves and adjacent habitats, a research area which has received increasing attention in the last decade. Finally, we reviewed current insights into the degree to which mangrove litter fuels the mangrove food web, since this has been the subject of longstanding debate.
Our current knowledge on production, composition, transport, pathways and transformations of organic carbon in tropical mangrove environments is reviewed and discussed. Organic carbon entering mangrove foodwebs is either produced autochthonously or imported by tides and/or rivers. Mangrove litter and benthic microalgae are usually the most important autochthonous carbon sources. Depending on local conditions, phytoplankton and seagrass detritus imported with tides may represent a significant supplementary carbon input. Litter handling by the fauna not only affects microbial carbon transformations, but also the amount of organic carbon available for export. Most mangrove detritus that enters the sediment is degraded by microorganisms. Aerobic respiration and anaerobic sulfate reduction are usually considered the most important microbial respiration processes, but recent evidence suggests that iron respiration may be important in mangrove sediments as well. Organic carbon that escapes microbial degradation is stored in sediments and in some mangrove ecosystems, organic-rich sediments may extend to several meters depth. Many mangrove forests also lose a significant fraction of their net primary production to coastal waters. Large differences occur between mangrove forests with respect to litter production and export. Mangrove-derived DOC is also released into the water column and can add to the total organic carbon export. Numerous compounds have been characterized from mangrove tissues, including carbohydrates, amino acids, ligninderived phenols, tannins, fatty acids, triterpenoids and n-alkanes. Many of these may, together with stable isotopes, exhibit a strong source signature and are potentially useful tracers of mangrove-derived organic matter. Our knowledge on mangrove carbon dynamics has improved considerably in recent years, but there are still significant gaps and shortcomings. These are emphasized and relevant research directions are suggested.
[1] Mangrove forests are highly productive but globally threatened coastal ecosystems, whose role in the carbon budget of the coastal zone has long been debated. Here we provide a comprehensive synthesis of the available data on carbon fluxes in mangrove ecosystems. A reassessment of global mangrove primary production from the literature results in a conservative estimate of $218 ± 72 Tg C a À1 . When using the best available estimates of various carbon sinks (organic carbon export, sediment burial, and mineralization), it appears that >50% of the carbon fixed by mangrove vegetation is unaccounted for. This unaccounted carbon sink is conservatively estimated at $112 ± 85 Tg C a À1 , equivalent in magnitude to $30-40% of the global riverine organic carbon input to the coastal zone. Our analysis suggests that mineralization is severely underestimated, and that the majority of carbon export from mangroves to adjacent waters occurs as dissolved inorganic carbon (DIC). CO 2 efflux from sediments and creek waters and tidal export of DIC appear to be the major sinks. These processes are quantitatively comparable in magnitude to the unaccounted carbon sink in current budgets, but are not yet adequately constrained with the limited published data available so far.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.