Gastroesophageal adenocarcinoma (GEA) is a lethal disease where targeted therapies, even when guided by genomic biomarkers, have had limited effi cacy. A potential reason for the failure of such therapies is that genomic profi ling results could commonly differ between the primary and metastatic tumors. To evaluate genomic heterogeneity, we sequenced paired primary GEA and synchronous metastatic lesions across multiple cohorts, fi nding extensive differences in genomic alterations, including discrepancies in potentially clinically relevant alterations. Multiregion sequencing showed signifi cant discrepancy within the primary tumor (PT) and between the PT and disseminated disease, with oncogene amplifi cation profi les commonly discordant. In addition, a pilot analysis of cell-free DNA (cfDNA) sequencing demonstrated the feasibility of detecting genomic amplifi cations not detected in PT sampling. Lastly, we profi led paired primary tumors, metastatic tumors, and cfDNA from patients enrolled in the personalized antibodies for GEA (PANGEA) trial of targeted therapies in GEA and found that genomic biomarkers were recurrently discrepant between the PT and untreated metastases. Divergent primary and metastatic tissue profi ling led to treatment reassignment in 32% (9/28) of patients. In discordant primary and metastatic lesions, we found 87.5% concordance for targetable alterations in metastatic tissue and cfDNA, suggesting the potential for cfDNA profi ling to enhance selection of therapy. SIGNIFICANCE:We demonstrate frequent baseline heterogeneity in targetable genomic alterations in GEA, indicating that current tissue sampling practices for biomarker testing do not effectively guide precision medicine in this disease and that routine profi ling of metastatic lesions and/or cfDNA should be systematically evaluated. Cancer Discov; 8(1);[37][38][39][40][41][42][43][44][45][46][47][48]
Purpose: Gastroesophageal adenocarcinoma (GEA) has a poor prognosis and few therapeutic options. Utilizing a 73gene plasma-based next-generation sequencing (NGS) cellfree circulating tumor DNA (ctDNA-NGS) test, we sought to evaluate the role of ctDNA-NGS in guiding clinical decisionmaking in GEA. Experimental Design: We evaluated a large cohort (n ¼ 2,140 tests; 1,630 patients) of ctDNA-NGS results (including 369 clinically annotated patients). Patients were assessed for genomic alteration (GA) distribution and correlation with clinicopathologic characteristics and outcomes. Results: Treatment history, tumor site, and disease burden dictated tumor-DNA shedding and consequent ctDNA-NGS maximum somatic variant allele frequency. Patients with locally advanced disease having detectable ctDNA postoperatively experienced inferior median disease-free survival (P ¼ 0.03). The genomic landscape was similar but not identical to tissue-NGS, reflecting temporospatial molecular heterogeneity, with some targetable GAs identified at higher frequency via ctDNA-NGS compared with previous primary tumor-NGS cohorts. Patients with known microsatellite instabilityhigh (MSI-High) tumors were robustly detected with ctDNA-NGS. Predictive biomarker assessment was optimized by incorporating tissue-NGS and ctDNA-NGS assessment in a complementary manner. HER2 inhibition demonstrated a profound survival benefit in HER2-amplified patients by ctDNA-NGS and/or tissue-NGS (median overall survival, 26.3 vs. 7.4 months; P ¼ 0.002), as did EGFR inhibition in EGFR-amplified patients (median overall survival, 21.1 vs. 14.4 months; P ¼ 0.01). Conclusions: ctDNA-NGS characterized GEA molecular heterogeneity and rendered important prognostic and predictive information, complementary to tissue-NGS. See related commentary by Frankell and Smyth, p. 6893
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.