Urbanization displaces agriculture and natural ecosystems, constraining food security and carbon (C) sinks. A proposed solution, Urban Food Forestry (UFF), promises local food from trees that can sequester C faster than other land cover types as long as soil function improves. We compared fine-scale variation in soil physical, chemical and biological properties within and between UFF and traditional lawn for evidence of changes in belowground ecosystem services. Both land covers sequestered C, but UFF did so nearly an order of magnitude faster, especially in upper soil strata where soil bulk density fell by 50% and microbial activity increased by an order of magnitude. Species richness of both soil fungi and bacteria increased along with nutrient concentrations. Contrary to expectations, that different tree traits would drive increasing fine scale variability in C density, soils beneath the UFF became more uniform, which is consistent with the rapid emergence of system-level regulation. Soil C mass balance may distinguish forests from collections of trees and determine how long UFF helps cities store their carbon and eat it too.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.