Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number.
Specialized hardware accelerators can significantly improve the performance and power efficiency of compute systems. In this paper, we focus on hardware accelerators for graph analytics applications and propose a configurable architecture template that is specifically optimized for iterative vertex-centric graph applications with irregular access patterns and asymmetric convergence. The proposed architecture addresses the limitations of the existing multi-core CPU and GPU architectures for these types of applications. The SystemC-based template we provide can be customized easily for different vertex-centric applications by inserting application-level data structures and functions. After that, a cycle-accurate simulator and RTL can be generated to model the target hardware accelerators. In our experiments, we study several graph-parallel applications, and show that the hardware accelerators generated by our template can outperform a 24 core high end server CPU system by up to 3x in terms of performance. We also estimate the area requirement and power consumption of these hardware accelerators through physical-aware logic synthesis, and show up to 65x better power consumption with significantly smaller area.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.