Geosynthetic-reinforced soil (GRS) bridge abutments have been used on a number of bridge projects over the past decade. This adaptation of reinforced soil technology to bridge structures and their approach fills offers an excellent opportunity to simplify construction, reduce construction time, and reduce cost on structures for which this technology is appropriate. This design concept, in which the actual bridge superstructure rests upon the GRS abutment wall, minimizes differential settlement and eliminates the problematic “bridge bump” found on many structures. The technology has been adapted to both road and trail bridges. The basic design concept of GRS used in bridge abutment applications was evaluated, along with its advantages and disadvantages. Some selected case histories of GRS bridge abutments on low-volume roads and trails in Alaska and California were considered. In addition, the Mammoth bridges, in the mountains of northern California, with high design snow loads and high horizontal peak ground accelerations, afforded an opportunity to design, construct, and monitor GRS-supported spread-footing abutments under difficult service conditions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.