Reacting K2PtCl4 with the tridentate R-C(wedge)N(wedge)C-H2 ligands 2,6-di-(2'-naphthyl)-4-R-pyridine (R = H, 1a; Ph, 1b; 4-BrC6H4, 1c; 3,5-F2C6H3, 1d) in glacial acetic acid, followed by heating in dimethyl sulfoxide (DMSO), gave complexes [(R-C(wedge)N(wedge)C)Pt(DMSO)] (2a-d). In the crystal structures of 2a-c, the molecules are paired in a head-to-tail orientation with Pt...Pt separations >6.3 A, and there are extensive close C-H...pi (d = 2.656-2.891 A), pi...pi (d = 3.322-3.399 A), and C-H...O=S (d = 2.265-2.643 A) contacts. [(Ph-C(wedge)N(wedge)C)Pt(PPh3)] (3) was prepared by reacting 2b with PPh3. Reactions of 2a-d with bis(diphenylphosphino)methane (dppm) gave [(R-C(wedge)N(wedge)C)2Pt2(mu-dppm)] (4a-d). Both head-to-head (syn) and head-to-tail (anti) conformations were found for 4a.6CHCl3.C5H12, whereas only one conformation was observed for 4b.2CHCl3 (syn), 4c.3CH2Cl2 (syn), and 4d.2CHCl3 (anti). In the crystal structures of 4a-d, there are close intramolecular Pt...Pt contacts of 3.272-3.441 A in the syn conformers, and long intramolecular Pt...Pt separations of 5.681-5.714 A in the anti conformers. There are weak C-H...X (d = 2.497-3.134 A) and X...X (X = Cl or Br; d = 2.973-3.655 A) interactions between molecules 4a-d and occluded CHCl3/CH2Cl2 molecules, and their solvent channels are of varying diameters (approximately 9-28 A). Complexes 2a-d, 3, and 4a-d are photoluminescent in the solid state, with emission maxima at 602-643 nm. Upon exposure to volatile organic compounds, 4a shows a fast and reversible vapoluminescent response, which is most intense with volatile halogenated solvents (except CCl4). Powder X-ray diffraction analysis of desolvated 4a revealed a more condensed molecular packing of syn and anti complexes than crystal 4a.6CHCl3.C5H12.
A series of cyclometalated gold(III) compounds [Au(m)(C(wedge)N(wedge)C)mL]n+ (m = 1-3; n = 0-3; HC(wedge)N(wedge)CH = 2,6-diphenylpyridine) was prepared by ligand substitution reaction of L with N-donor or phosphine ligands. The [Au(m)(C(wedge)N(wedge)C)mL]n+ compounds are stable in solution in the presence of glutathione. Crystal structures of the gold(III) compounds containing bridging bi- and tridentate phosphino ligands reveal the presence of weak intramolecular pi pi stacking between the [Au(C(wedge)N(wedge)C)]+ units. Results of MTT assays demonstrated that the [Au(m)(C(wedge)N(wedge)C)mL]n+ compounds containing nontoxic N-donor auxiliary ligands (2) exert anticancer potency comparable to that of cisplatin, with IC50 values ranging from 1.5 to 84 microM. The use of [Au(C(wedge)N(wedge)C)(1-methylimidazole)]+ (2 a) as a model compound revealed that the gold(III)-induced cytotoxicity occurs through an apoptotic cell-death pathway. The cell-free interaction of 2 a with double-stranded DNA was also examined. Absorption titration showed that 2 a binds to calf-thymus DNA (ctDNA) with a binding constant of 4.5 x 10(5) dm3 mol(-1) at 298 K. Evidence from gel-mobility-shift assays and viscosity measurements supports an intercalating binding mode for the 2 a-DNA interaction. Cell-cycle analysis revealed that 2 a causes S-phase cell arrest after incubation for 24 and 48 hours. The cytotoxicity of 3 b-g toward cancer cells (IC50 = 0.04-4.3 microM) correlates to that of the metal-free phosphine ligands (IC50 = 0.1-38.0 microM), with [Au2(C(wedge)N(wedge)C)2(mu-dppp)]2+ (3 d) and dppp (dppp = 1,2-bis(diphenylphosphino)propane) being the most cytotoxic gold(III) and metal-free compounds, respectively. Compound 3 d shows a cytotoxicity at least ten-fold higher than the other gold(III) analogues; in vitro cellular-uptake experiments reveal similar absorptions for all the gold(III) compounds into nasopharyngeal carcinoma cells (SUNE1) (1.18-3.81 ng/cell; c.f., 3 d = 2.04 ng/cell), suggesting the presence of non-gold-mediated cytotoxicity. Unlike 2 a, both gold(III) compounds [Au(C(wedge)N(wedge)C)(PPh3)]+ (3 a) (PPh3 = triphenylphosphine) and [Au2(C(wedge)N(wedge)C)2(mu-dppp)]2+ (3 d) interact only weakly with ctDNA and do not arrest the cell cycle.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.