Significance Sea stars inhabiting the Northeast Pacific Coast have recently experienced an extensive outbreak of wasting disease, leading to their degradation and disappearance from many coastal areas. In this paper, we present evidence that the cause of the disease is transmissible from disease-affected animals to apparently healthy individuals, that the disease-causing agent is a virus-sized microorganism, and that the best candidate viral taxon, the sea star-associated densovirus (SSaDV), is in greater abundance in diseased than in healthy sea stars.
Over 20 species of asteroids were devastated by a sea star wasting disease (SSWD) epizootic, linked to a densovirus, from Mexico to Alaska in 2013 and 2014. For Pisaster ochraceus from the San Juan Islands, South Puget Sound and Washington outer coast, time-series monitoring showed rapid disease spread, high mortality rates in 2014, and continuing levels of wasting in the survivors in 2015. Peak prevalence of disease at 16 sites ranged to 100%, with an overall mean of 61%. Analysis of longitudinal data showed disease risk was correlated with both size and temperature and resulted in shifts in population size structure; adult populations fell to one quarter of pre-outbreak abundances. In laboratory experiments, time between development of disease signs and death was influenced by temperature in adults but not juveniles and adult mortality was 18% higher in the 19°C treatment compared to the lower temperature treatments. While larger ochre stars developed disease signs sooner than juveniles, diseased juveniles died more quickly than diseased adults. Unusual 2–3°C warm temperature anomalies were coincident with the summer 2014 mortalities. We suggest these warm waters could have increased the disease progression and mortality rates of SSWD in Washington State.
Disease outbreaks can have substantial impacts on wild populations, but the often patchy or anecdotal evidence of these impacts impedes our ability to understand outbreak dynamics. Recently however, a severe disease outbreak occurred in a group of very well-studied organisms–sea stars along the west coast of North America. We analyzed nearly two decades of data from a coordinated monitoring effort at 88 sites ranging from southern British Columbia to San Diego, California along with 2 sites near Sitka, Alaska to better understand the effects of sea star wasting disease (SSWD) on the keystone intertidal predator, Pisaster ochraceus. Quantitative surveys revealed unprecedented declines of P. ochraceus in 2014 and 2015 across nearly the entire geographic range of the species. The intensity of the impact of SSWD was not uniform across the affected area, with proportionally greater population declines in the southern regions relative to the north. The degree of population decline was unrelated to pre-outbreak P. ochraceus density, although these factors have been linked in other well-documented disease events. While elevated seawater temperatures were not broadly linked to the initial emergence of SSWD, anomalously high seawater temperatures in 2014 and 2015 might have exacerbated the disease’s impact. Both before and after the onset of the SSWD outbreak, we documented higher recruitment of P. ochraceus in the north than in the south, and while some juveniles are surviving (as evidenced by transition of recruitment pulses to larger size classes), post-SSWD survivorship is lower than during pre-SSWD periods. In hindsight, our data suggest that the SSWD event defied prediction based on two factors found to be important in other marine disease events, sea water temperature and population density, and illustrate the importance of surveillance of natural populations as one element of an integrated approach to marine disease ecology. Low levels of SSWD-symptomatic sea stars are still present throughout the impacted range, thus the outlook for population recovery is uncertain.
Ice cover plays a critical role in physical, biogeochemical, and ecological processes in lakes. Despite its importance, winter limnology remains relatively understudied. Here, we provide a primer on the predominant drivers of freshwater lake ice cover and the current methodologies used to study lake ice, including in situ and remote sensing observations, physical based models, and experiments. We highlight opportunities for future research by integrating these four disciplines to address key knowledge gaps in our understanding of lake ice dynamics in changing winters. Advances in technology, data integration, and interdisciplinary collaboration will allow the field to move toward developing global forecasts of lake ice cover for small to large lakes across broad spatial and temporal scales, quantifying ice quality and ice thickness, moving from binary to continuous ice records, and determining how winter ice conditions and quality impact ecosystem processes in lakes over winter. Ultimately, integrating disciplines will improve our ability to understand the impacts of changing winters on lake ice.
Summary 1. In large deep oligotrophic lakes, the shallow nearshore waters may provide the most important habitat for animals to feed and breed, and it is this area of the lake where humans are most likely to have initial impacts as the shoreline is developed. Nutrients in fertilizers, sediments and sewage effluents are likely to be rapidly intercepted by nearshore algae at the lake edge, having heterogeneous effects nearshore before offshore effects are noted. 2. Here we examined the spatially explicit effects of residential development on nearshore periphyton communities in three large deep oligotrophic lakes that have all experienced modest residential development in the Pacific Northwest of the United States. We demonstrate that substantial nearshore changes in the basal food web are detectable even with low levels of shoreline development. These changes can potentially affect whole‐lake food web dynamics. 3. For our primary study site (Lake Crescent, Washington, USA), we found that algal biomass and accumulation of detritus were higher at developed sites. In addition, both macroinvertebrate and periphyton communities exhibited a shift in composition with more detritivores and filamentous green algae at developed sites. These differences were more pronounced during the spring than at other times of year. 4. A complementary investigation of field patterns in Priest Lake and Lake Pend Oreille (Idaho, USA) suggested that, although spatial and temporal patterns were idiosyncratic, indicators of productivity and the presence of filamentous green algae were generally higher at developed sites across lakes. 5. Stable isotope signatures and water column nutrients were not useful in distinguishing developed and undeveloped sites, increasing the potential usefulness of periphyton monitoring during early stages of lake development. 6. A laboratory investigation suggested that common macroinvertebrate grazers assimilated a much greater proportion of diatoms than the filamentous green algae that are associated with fertilization at developed sites. 7. These findings have at least two clear implications: (i) periphyton may be used to detect human impacts before disturbance is evident in offshore monitoring programmes and (ii) nearshore impacts in response to modest residential development have the potential to disrupt lake food web dynamics.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.