ABSTRACT:Concurrent bulk ground conductivity mapping and direct measurements of seepage rates were carried out near a pier at Shelter Island, New York, U.S.A. A shallow sediment layer was identified to provide confinement for lower aquifer units. The conductivity and seepage rate data indicate that pilings of the pier apparently pierce this shallow sediment layer, producing a comparatively high seepage rate driven by the hydraulic head of the (partially) confined aquifer, resulting in a substantial increase in submarine groundwater discharge (SGD) near the pier. Seepage rate measurements made close to the pier, which runs perpendicular to the shoreline, cannot be considered representative for the area. At the study site, the magnitude of SGD depends both on the distance from shore and on the distance from the pier, a rmding that confounds the commonly observed patterns of decreasing SGD with increasing distance from shore. This alteration of a groundwater flow pattern is a previously undescribed effect of anthropogenic perturbation in a coastal system.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.