Downsized, highly boosted, gasoline direct injection engines are becoming the preferred gasoline engine technology to ensure that increasingly stringent fuel economy and emissions legislation are met. The Ultraboost project engine is a 2.0-L in-line four-cylinder prototype engine, designed to have the same performance as a 5.0-L V8 naturally aspirated engine but with reduced fuel consumption. It is important to examine particle number emissions from such extremely highly boosted engines to ensure that they are capable of meeting current and future emissions legislation. The effect of such high boosting on particle number emissions is reported in this article for a variety of operating points and engine operating parameters. The effect of engine load, air-fuel ratio, fuel injection pressure, fuel injection timing, ignition timing, inlet air temperature, exhaust gas recirculation level, and exhaust back pressure has been investigated. It is shown that particle number emissions increase with increase in cooled, external exhaust gas recirculation and engine load, and decrease with increase in fuel injection pressure and inlet air temperature. Particle number emissions are shown to fall with increased exhaust back pressure, a key parameter for highly boosted engines. The effects of these parameters on the particle size distributions from the engine have also been evaluated. Significant changes to the particle size spectrum emitted from the engine are seen depending on the engine operating point. Operating points with a bias towards very small particle sizes were noted.
In this work, PN emissions from a highly boosted engine capable of running at up to 35 bar Brake Mean Effective Pressure (BMEP) have been measured from a baseline gasoline and three different oxygenate fuels (E20, E85, and GEM -a blend of gasoline, ethanol, and methanol) using a DMS500. The engine has been run at four different operating points, and a number of engine parameters relevant to highly-boosted engines (such as EGR, exhaust back pressure, and lambda) have been tested -the PN emissions and size distributions have been measured from all of these.The results show that the oxygenate content of the fuel has a very large impact on its PN emissions, with E85 giving low levels of PN emissions across the operating range, and GEM giving very low and extremely high levels of PN emissions depending on operating point. These results have been analysed and related back to key fuel properties.
Market demand for high performance gasoline vehicles and increasingly strict government emissions regulations are driving the development of highly downsized, boosted direct injection engines. The in-cylinder temperatures and pressures of these emerging technologies tend to no longer adhere to the test conditions defining the RON and MON octane rating scales. This divergence between fuel knock rating methods and fuel performance in modern engines has previously led to the development of an engine and operating condition dependent scaling factor, K, which allows for extrapolation of RON and MON values. Downsized, boosted DISI engines have been generally shown to have negative K-values when knock limited, indicating a preference for fuels of higher sensitivity and challenging the relevance of a lower limit to the MON specification.The Ultraboost engine is an inline-4 downsized, highly boosted prototype DISI engine designed to achieve a 35% reduction in CO 2 emissions whilst maintaining performance of a production V8. A series of 14 fuel formulations were tested to probe engine response to various fuel properties. This paper presents results from a 7 fuel RON and MON decorrelated matrix at four high-load engine conditions. The K-value was found to be negative at all engine conditions; fuels of higher sensitivity were found to yield improved engine performance. Furthermore, in-cylinder experimental data from high load knocking conditions with a single standard octane fuel were used to simulate the K-value; a similar trend between theory and experiment was observed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.