Exercise provides a cornerstone in the prevention and treatment of several chronic diseases. The use of in vivo exercise models alone cannot fully establish the skeletal muscle-specific mechanisms involved in such health-promoting effects. As such, models that replicate exercise-like effects in vitro provide useful tools to allow investigations that are not otherwise possible in vivo. In this review, we provide an overview of experimental models currently used to induce exercise-like effects in skeletal muscle in vitro. In particular, the appropriateness of electrical pulse stimulation and several pharmacological compounds to resemble exercise, as well as important technical considerations, are addressed. Each model covered herein provides a useful tool to investigate different aspects of exercise with a level of abstraction not possible in vivo. That said, none of these models are perfect under all circumstances, and the choice of model (and terminology) used should be informed by the specific research question whilst accounting for the several inherent limitations of each model. Further work is required to develop and optimise the current experimental models used, such as combination with complementary techniques during treatment, and thereby improve their overall utility and impact within muscle biology research.
Background Exercise improves glycemic control but the magnitude, and in some cases, the direction of this effect is variable. Ambient hyperglycemia has been implicated in this exercise response heterogeneity. The current study investigated whether pre-exercise hyperglycemia directly impacts the effect of exercise on glycemic control. Methods Twelve healthy normal glucose-tolerant males completed four trials in a randomized, crossover design. Each trial consisted of 24-h pre-intervention monitoring, a 7-h intervention, and 24-h post-intervention monitoring. Glycemic control was measured throughout the study by continuous glucose monitoring. The four interventions were no exercise (CON) or 45 min of cycling exercise (70%HRmax) preceded by 3.5 h of either normoglycemia (NG-Ex), steady-state hyperglycemia induced by constant glucose infusion (HG-Ex) or fluctuating glycemia induced by repeated glucose bolus infusions (FG-Ex). Results Physical activity and diet were similar between trials, and energy expenditure during exercise was matched between exercise trials (all P > 0.05). Mean glucose during the 3.5 h ± infusion period was higher in HG-Ex (mean ± SEM; 7.2 ± 0.4 mmol/L) and FG-Ex (7.3 ± 0.3 mmol/L) compared to CON (4.8 ± 0.2 mmol/L) and NG-Ex (5.0 ± 0.2 mmol/L) trials ( P < 0.01). Glycemic variability was greatest in FG-Ex ( P < 0.01). Following the interventions, the postprandial glucose response (iAUC) was reduced by exercise in NG-Ex compared to CON (321.1 ± 38.6 vs. 445.5 ± 49.7 mmol/L.8h, P < 0.05, d =0.81). This benefit was blunted when exercise was preceded by steady-state (HG-Ex, 425.3 ± 45.7 mmol/L.8h) and fluctuating (FG-Ex, 465.5 ± 39.3 mmol/L.8h) hyperglycemia (both P > 0.05 vs. CON). Conclusion Pre-exercise hyperglycemia blunted the glucoregulatory benefits of acute exercise upon postprandial glucose response, suggesting that exposure to hyperglycemia contributes to exercise response heterogeneity. Clinical Trial Registration ClinicalTrials.gov, identifier NCT03284216.
Exercise improves insulin secretion by pancreatic beta cells (β-cells) in patients with type 2 diabetes, but molecular mechanisms of this effect are yet to be determined. Given that contracting skeletal muscle causes a spike in circulating interleukin-6 (IL-6) levels during exercise, muscle-derived IL-6 is a possible endocrine signal associated with skeletal muscle to β-cell crosstalk. Evidence to support a role of IL-6 in regulating the health and function of β-cells is currently inconsistent and studies investigating the role of IL-6 on the function of β-cells exposed to type 2 diabetic-like conditions are limited and often confounded by supraphysiological IL-6 concentrations. The purpose of this study is to explore the extent by which an exercise-relevant concentration of IL-6 influences the function of pancreatic β-cells exposed to type 2 diabetic-like conditions. Using insulin-secreting INS-1 832/3 cells as an experimental β-cell model, we show that 1-h IL-6 (10 pg/mL) has no effect on insulin secretion under normal conditions and does not restore the loss of insulin secretion caused by elevated glucose ± palmitate or IL-1β. Moreover, treatment of INS-1 832/3 cells to medium collected from C2C12 myotubes conditioned with electrical pulse stimulation does not alter insulin secretion despite significant increases in IL-6. Since insulin secretory defects caused by diabetic-like conditions are neither improved nor worsened by exposure to physiological IL-6 levels, we conclude that the beneficial effect of exercise on β-cell function is unlikely to be driven by muscle-derived IL-6.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.