Purpose
To evaluate retinal and choroidal blood flow (BF) using high-resolution magnetic resonance imaging (MRI) as well as visual function measured by the electroretinogram (ERG) in patients with retinitis pigmentosa (RP).
Methods
MRI studies were performed in 6 RP patients (29-67 years) and 5 healthy volunteers (29-64 years) on a 3-Tesla scanner with a custom-made surface coil. Quantitative BF was measured using the pseudo-continuous arterial-spin-labeling technique at 0.5x0.8x6.0mm. Full-field ERGs of all patients were recorded. Amplitudes and implicit times of standard ERGs were analyzed.
Results
Basal BF in the posterior retinal-choroid was 142±16 ml/100ml/min (or 1.14±0.13 μl/mm2/min) in the control group and was 70±19 ml/100ml/min (or 0.56±0.15 μl/mm2/min) in the RP group. Retinal-choroidal BF was significantly reduced by 52±8% in RP patients compared to controls (P<0.05). ERG a- and b-wave amplitudes of RP patients were reduced and b-wave implicit times were delayed. There were statistically significant correlations between a-wave amplitude and BF value (r=0.9, P<0.05) but not between b-wave amplitude and BF value (r =0.7, P=0.2).
Conclusions
This study demonstrates a novel non-invasive MRI approach to measure quantitative retinal and choroidal BF in RP patients. We found that retinal-choroidal BF was markedly reduced and significantly correlated with reduced amplitudes of the a-wave of the standard combined ERG.
The purpose of this study was to evaluate anterior segment bioeffects of pulsed 35 GHz and 94 GHz microwave exposure in the nonhuman primate eye. Five juvenile rhesus monkeys (Macaca mulatta) underwent baseline anterior segment ocular assessment consisting of slit lamp examination, corneal topography, specular microscopy, and pachymetry. These studies were repeated after exposure of one eye to pulsed 35 GHz or 94 GHz microwaves at varied fluences, with the other eye serving as a control. The mean fluence required to produce a threshold corneal lesion (faint epithelial edema and fluorescein staining) was 7.5 J cm(-2) at 35 GHz and 5 J cm(-2) at 94 GHz. Transient changes in corneal topography and pachymetry were noted at these fluences. Endothelial cell counts remained unchanged. Threshold corneal injury from 35 GHz and 94 GHz microwave exposure is produced at fluences below those previously reported for CO2 laser radiation. These data may help elucidate the mechanism of thermal injury to the cornea, and resolve discrepancies between IEEE C95.1 (1999), NCRP (1986), and ICNIRP (1998) safety standards for exposure to non-ionizing radiation at millimeter wavelengths.
These results support the hypothesis that there are functional alteration and remapping in the topographic representation of the visual cortex in POAG participants, and these changes are correlated with disease severity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.