The induction of strain in carbocycles, thereby increasing the amount of s-character in the C−H bonds and the acidity of these protons, has been probed with regard to its effect on the rate constants for the enolization of cyclobutanone. The second-order rate constants for the general base-catalyzed enolization of cyclobutanone have been determined for a series of 3-substituted quinuclidine buffers in D2O at 25 °C, I = 1.0 M (KCl). The rate constants for enolization were determined by following the extent of deuterium incorporation (up to ∼30% of the first α-proton) into the α-position, as a function of time. The observed pseudo-first-order rate constants correlated to the [basic form] of the buffer and yielded the second-order rate constants for the general base-catalyzed enolization of cyclobutanone for four tertiary amine buffers. A Brønsted β-value of 0.59 was determined from the second-order rate constants determined. Comparison of the results for cyclobutanone to those previously reported for acetone and a 1-phenylacetone derivative, under similar conditions, indicated that the ring strain of the carbocycle appeared to have only a small effect on the general base-catalyzed rate constants for enolization. The similarity of the rate constants for the general base-catalyzed enolization of cyclobutanone to those determined for acetone allowed for an estimation of the limits of the rate constant for protonation of the enolate intermediate of cyclobutanone by the conjugate acid of 3-quinuclidinone (k BH = 5 × 108 − 2 × 109 M−1 s−1). Combining the rate constants for deprotonation of cyclobutanone (k B) and protonation of the enolate of cyclobutanone (k BH) by 3-quinuclidinone and its conjugate acid, the pK a of the α-protons of cyclobutanone has been estimated to be pK a = 19.7−20.2.
Hydrogen peroxide (H(2)O(2)) generated from the manganese(II) catalysed reduction of dioxygen has been shown to efficiently oxidize Calmagite (3-hydroxy-4-(2-hydroxy-5-methylphenylazo)naphthalene-1-sulfonic acid) in aqueous solution at pH 8.0 and 20 +/- 1 degrees C with de-protonated Tiron (1,2-dihydroxybenzene-3,5-disulfonate, disodium salt) acting as an essential co-ligand.
The kinetics and mechanism for the bleaching of Calmagite (H3CAL, 3-hydroxy-4-(2-hydroxy-5-methylphenylazo)naphthalene-1-sulfonic acid) in aqueous solution at pH 8.00 and 23 ± 1 °C using in situ generated H2O2 is described. Complete mineralisation of H3CAL results with turnover frequencies (TOF = moles of H3CAL bleached per mole of manganese per hour) of 40 h(-1). The monohydroxy azo dyes Me-H2CAL, Orange G and Orange II are not bleached which indicates that a requirement of dye bleaching is the coordination of the dye to the Mn centre. Spectroscopic studies show the formation of Mn(CAL)2 and Mn(CAL) species but in the presence of Tiron (1,2-dihydroxybenzene-3,5-disulfonate, disodium salt, monohydrate, Na2TH2·H2O), [Mn(CAL)(T)] is formed. It is proposed that a Mn(III)-hydroperoxide species is generated, [Mn(O2H)(CAL)(TQ)] from the in situ generated H2O2, where TQ represents the o-quinone form of Tiron, and this is the active species in the bleaching of coordinated CAL; the formation of this hydroperoxide species is supported by UV/VIS and ESI-MS data. The formation of a Mn(III) species is supported by EPR studies which also show some evidence for the presence of a labile d(5) Mn(II) species in the presence of the reducing substrate hydroxylamine (NH2OH). This would enable rapid ligand exchange for both in situ H2O2 generation and dye bleaching to occur; there is no evidence for the presence of Mn(IV)=O species. The virtue of low local concentrations of in situ generated H2O2 is shown to be important in preventing over oxidation of the catalyst and thus contributing to a robust catalytic system.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.