Deposition of iron in the brain is proposed to play a role in the pathophysiology of the normal aging process and neurodegenerative diseases. Whereas iron is required for normal neuronal metabolism, excessive levels can contribute to the formation of free radicals, leading to lipid peroxidation and neurotoxicity. Magnetic resonance imaging (MRI) is a powerful tool to detect excessive iron in the brain and longitudinally monitor changes in iron levels. Iron deposition is associated with a reduction in the T2 relaxation time, leading to hypointensity on spin-echo and gradient-echo T2-weighted images. The MRI changes associated with iron deposition have been observed both in normal aging and in various chronic neurological diseases, including multiple sclerosis, Alzheimer disease, and Parkinson disease. Magnetic resonance imaging metrics providing information about iron concentrations include R2, R2', and R2*. The purpose of this review is to discuss the role of iron and its detection by MRI in various neurological disorders. We will review the basic biochemical properties of iron and its influence on MRI signal. We will also summarize the sensitivity and specificity of MRI techniques in detecting iron. The MRI and pathological findings pertaining to brain iron will be reviewed with respect to normal aging and a variety of neurological disorders. Finally, the biochemistry and pathophysiology surrounding iron, oxidative stress, free radicals, and lipid peroxidation in the brain will be discussed, including therapeutic implications. The potential role of iron deposition and its assessment by MRI provides exciting potential applications to the diagnosis, longitudinal monitoring, and therapeutic development for disorders of the brain.
Grey matter hypointensity on T2-weighted magnetic resonance imaging (MRI) scans, suggesting iron deposition, has been described in multiple sclerosis (MS) and is related to physical disability, disease course and brain atrophy. We tested the hypothesis that subcortical grey matter T2 hypointensity is related to cognitive impairment after adjusting for the effect of MRI lesion and atrophy measures. We studied 33 patients with MS and 14 healthy controls. Normalized T2 signal intensity in the caudate, putamen, globus pallidus and thalamus, total brain T1-hypointense lesion volume (T1LV), fluid-attenuated inversion-recovery-hyperintense lesion volume (FLLV) and brain parenchymal fraction (BPF) were obtained quantitatively. A neuropsychological composite score (NCS) encompassed new learning, attention, working memory, spatial processing and executive function. In each of the regions of interest, the normalized T2 intensity was lower in the MS versus control group (all P<0.001). Regression modelling tested the relative association between all MRI variables and NCS. Globus pallidus T2 hypointensity was the only variable selected in the final model (R2 = 0.301, P = 0.007). Pearson correlations between MRI and NCS were T1LV: r = -0.319; FLLV: r = -0.347; BPF: r = 0.374; T2 hypointensity of the caudate: r = 0.305; globus pallidus: r = 0.395; putamen: r = 0.321; and thalamus: r = 0.265. Basal ganglia T2 hypointensity and BPF demonstrated the strongest associations with cognitive impairment on individual cognitive subtests. Subcortical grey matter T2 hypointensity is related to cognitive impairment in MS, supporting the clinical relevance of T2 hypointensity as a biological marker of MS tissue damage. These data implicate a role for basal ganglia iron deposition in neuropsychological dysfunction.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.