Formation of anterior structures in the Drosophila embryo requires the product of the gene bicoid. The bicoid protein contains a homeodomain and may exert its effects in early development by regulating transcription of the gap gene, hunchback (hb). Consistent with this view, we have demonstrated that DNA-bound Bicoid fusion proteins stimulate gene expression. We used the gene activation phenotype in yeast to study DNA recognition by the Bicoid homeodomain. We found that a single amino acid replacement at position 9 of the recognition helix was sufficient to switch the DNA specificity of the Bicoid protein. The altered specificity Bicoid mutants recognized DNA sites bound by Ultrabithorax, fushi tarazu, and other related homeo-domain proteins. Our results suggest that DNA specificity in Bicoid and Antennapedia class proteins is determined by recognition helix residue 9.
Transcription by RNA polymerase II (RNAPII) is coupled to mRNA processing and chromatin modifications via the C-terminal domain (CTD) of its largest subunit, consisting of multiple repeats of the heptapeptide YSPTSPS. Pioneering studies showed that CTD serines are differentially phosphorylated along genes in a prescribed pattern during the transcription cycle. Genome-wide analyses challenged this idea, suggesting that this cycle is not uniform among different genes. Moreover, the respective role of enzymes responsible for CTD modifications remains controversial. Here, we systematically profiled the location of the RNAPII phosphoisoforms in wild-type cells and mutants for most CTD modifying enzymes. Together with results of in vitro assays, these data reveal a complex interplay between the modifying enzymes, and provide evidence that the CTD cycle is uniform across genes. We also identify Ssu72 as the Ser7 phosphatase and show that proline isomerization is a key regulator of CTD dephosphorylation at the end of genes.
The NIMA kinase is essential for progression through mitosis in Aspergillus nidulans, and there is evidence for a similar pathway in other eukaryotic cells. Here we describe the human protein Pin1, a peptidyl-prolyl cis/trans isomerase (PPIase) that interacts with NIMA. PPIases are important in protein folding, assembly and/or transport, but none has so far been shown to be required for cell viability. Pin1 is nuclear PPIase containing a WW protein interaction domain, and is structurally and functionally related to Ess1/Ptf1, an essential protein in budding yeast. PPIase activity is necessary for Ess1/Pin1 function in yeast. Depletion of Pin1/Ess1 from yeast or HeLa cells induces mitotic arrest, whereas HeLa cells overexpressing Pin1 arrest in the G2 phase of the cell cycle. Pin1 is thus an essential PPIase that regulates mitosis presumably by interacting with NIMA and attenuating its mitosis-promoting activity.
contributed equally to this workThe Ess1/Pin1 peptidyl-prolyl isomerase (PPIase) is thought to control mitosis by binding to cell cycle regulatory proteins and altering their activity. Here we isolate temperature-sensitive ess1 mutants and identify six multicopy suppressors that rescue their mitotic-lethal phenotype. None are cell cycle regulators. Instead, ®ve encode proteins involved in transcription that bind DNA, modify chromatin structure or are regulatory subunits of RNA polymerase II. A sixth suppressor, cyclophilin A, is a member of a distinct family of PPIases that are targets of immunosuppressive drugs. We show that the expression of some but not all genes is decreased in ess1 mutants, and that Ess1 interacts with the C-terminal domain (CTD) of RNA polymerase II in vitro and in vivo. The results forge a strong link between PPIases and the transcription machinery and suggest a new model for how Ess1/Pin1 controls mitosis. In this model, Ess1 binds and isomerizes the CTD of RNA polymerase II, thus altering its interaction with proteins required for transcription of essential cell cycle genes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.