Several formally exact expressions for quantum mechanical rate constants (i.e., bimolecular reactive cross sections suitably averaged and summed over initial and final states) are derived and their relation to one another analyzed. It is suggested that they may provide a useful means for calculating quantum mechanical rate constants accurately without having to solve the complete state-to-state quantum mechanical reactive scattering problem. Several ways are discussed for evaluating the quantum mechanical traces involved in these expressions, including a path integral evaluation of the Boltzmann operator/time propagator and a discrete basis set approximation. Both these methods are applied to a one-dimensional test problem (the Eckart barrier).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.