Tomato (Solanum lycopersicum) is a major crop plant and a model system for fruit development. Solanum is one of the largest angiosperm genera(1) and includes annual and perennial plants from diverse habitats. Here we present a high-quality genome sequence of domesticated tomato, a draft sequence of its closest wild relative, Solanum pimpinellifolium(2), and compare them to each other and to the potato genome (Solanum tuberosum). The two tomato genomes show only 0.6% nucleotide divergence and signs of recent admixture, but show more than 8% divergence from potato, with nine large and several smaller inversions. In contrast to Arabidopsis, but similar to soybean, tomato and potato small RNAs map predominantly to gene-rich chromosomal regions, including gene promoters. The Solanum lineage has experienced two consecutive genome triplications: one that is ancient and shared with rosids, and a more recent one. These triplications set the stage for the neofunctionalization of genes controlling fruit characteristics, such as colour and fleshiness
Nearly a century has been spent collecting and preserving genetic diversity in plants. Germplasm banks-living seed collections that serve as repositories of genetic variation-have been established as a source of genes for improving agricultural crops. Genetic linkage maps have made it possible to study the chromosomal locations of genes for improving yield and other complex traits important to agriculture. The tools of genome research may finally unleash the genetic potential of our wild and cultivated germplasm resources for the benefit of society.
Domestication of many plants has correlated with dramatic increases in fruit size. In tomato, one quantitative trait locus (QTL), fw2.2, was responsible for a large step in this process. When transformed into large-fruited cultivars, a cosmid derived from the fw2.2 region of a small-fruited wild species reduced fruit size by the predicted amount and had the gene action expected for fw2.2. The cause of the QTL effect is a single gene, ORFX, that is expressed early in floral development, controls carpel cell number, and has a sequence suggesting structural similarity to the human oncogene c-H-ras p21. Alterations in fruit size, imparted by fw2.2 alleles, are most likely due to changes in regulation rather than in the sequence and structure of the encoded protein.In natural populations, most phenotypic variation is continuous and is effected by alleles at multiple loci. Although this quantitative variation fuels evolutionary change and has been exploited in the domestication and genetic improvement of plants and animals, the identification and isolation of the genes underlying this variation have been difficult.Conspicuous and important quantitative traits in plant agriculture are associated with domestication (1). Dramatic, relatively rapid evolution of fruit size has accompanied the domestication of virtually all fruit-bearing crop species (2). For example, the progenitor of the domesticated tomato (Lycopersicon esculentum) most likely had fruit less than 1 cm in diameter and only a few grams in weight (3). Such fruit was large enough to contain hundreds of seeds and yet small enough to be dispersed by small rodents or birds. In contrast, modern tomatoes can weigh as much as 1000 grams and can exceed 15 cm in diameter (Fig. 1A). Tomato fruit size is quantitatively controlled [for example, (4)]; however, the molecular basis of this transition has been unknown.Most of the loci involved in the evolution and domestication of tomato from small berries to large fruit have been genetically mapped (5, 6). One of these QTLs, fw2.2, changes fruit weight by up to 30% and appears to have been responsible for a key transition during domestication: All wild Lycopersicon species examined thus far contain small-fruit alleles at this locus, whereas modern cultivars have large-fruit alleles (7). By applying a map-based approach, we have cloned and sequenced a 19-kb segment of DNA containing this QTL and have identified the gene responsible for the QTL effect.Genetic complementation with fw2.2. A yeast artificial chromosome (YAC) containing fw2.2 was isolated (8) and used to screen a cDNA library (constructed from the small-fruited genotype, L. pennellii LA716). About 100 positive cDNA clones were identified that represent four unique transcripts (cDNA27, cDNA38, cDNA44, and cDNA70) that were derived from genes in the fw2.2 YAC contig. A high-resolution map was created of the four transcripts on 3472 F 2 individuals derived from a cross between two nearly isogenic lines (NILs) differing for alleles at fw2.2 ( Fig. 2A) (8). The fo...
The Pto gene in tomato confers resistance to races of Pseudomonas syringae pv. tomato that carry the avirulence gene avrPto. A yeast artificial chromosome clone that spans the Pto region was identified and used to probe a leaf complementary DNA (cDNA) library. A cDNA clone was isolated that represents a gene family, at least six members of which genetically cosegregate with Pto. When susceptible tomato plants were transformed with a cDNA from this family, they were resistant to the pathogen. Analysis of the amino acid sequence revealed similarity to serine-threonine protein kinases, suggesting a role for Pto in a signal transduction pathway.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.