The use of reinforcement learning for robot teams has enabled complex tasks to be performed, but at the cost of requiring a large amount of exploration. Exchanging information between robots in the form of advice is one method to accelerate performance improvements. This thesis presents an advice mechanism for robot teams that utilizes advice from heterogeneous advisers via a method guaranteeing convergence to an optimal policy. The presented mechanism has the capability to use multiple advisers at each time step, and decide when advice should be requested and accepted, such that the use of advice decreases over time. Additionally, collective collaborative, and cooperative behavioural algorithms are integrated into a robot team architecture, to create a new framework that provides fault tolerance and modularity for robot teams.ii
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.