ABSTRACT:The fish otolith (earstone) has long been known as a timekeeper, but interest in its use as a metabolically inert environmental recorder has accelerated in recent years. In part due to technological advances, applications such as stock identification, determination of rnigralon pathways, reconstruction of temperature and salinity history, age validation, detection of anadromy, use as a natural tag and chemical mass marking have been developed, some of which are difficult or impossible to implement using alternative techniques. Microsamphg and the latest advances in beam-based probes allow many elemental assays to be coupled with daily or annual growth increments, thus providing a detailed chronologcal record of the environment. However, few workers have critically assessed the assumptions upon which the environmental reconstructions are based, or considered the possibility that elemental incorporation into the otolith may proceed differently than that into other calcified structures. This paper reviews current applications and their assumptions and suggests future directions. Particular attention is given to the premises that the elemental and isotopic composition of the otolith reflects that of the environment, and the effect of physiological filters on the resulting composition. The roles of temperature, elemental uptake into the fish and the process of otolith crystahzation are also assessed. Drawing upon recent advances i n geochemistry and paleoclirnate research as points of contrast, it appears that not all applications of otolith chemistry are firmly based, although others are destined to become powerful and perhaps routine tools for the mainstream fish biologst.
Many calcified structures produce periodic growth increments useful for age determination at the annual or daily scale. However, age determination is invariably accompanied by various sources of error, some of which can have a serious effect on age-structured calculations. This review highlights the best available methods for insuring ageing accuracy and quantifying ageing precision, whether in support of large-scale production ageing or a small-scale research project. Included in this review is a critical overview of methods used to initiate and pursue an accurate and controlled ageing program, including (but not limited to) validation of an ageing method. The distinction between validation of absolute age and increment periodicity is emphasized, as is the importance of determining the age of first increment formation. Based on an analysis of 372 papers reporting age validation since 1983, considerable progress has been made in age validation efforts in recent years. Nevertheless, several of the age validation methods which have been used routinely are of dubious value, particularly marginal increment analysis. The two major measures of precision, average percent error and coefficient of variation, are shown to be functionally equivalent, and a conversion factor relating the two is presented. Through use of quality control monitoring, ageing errors are readily detected and quantified; reference collections are the key to both quality control and reduction of costs. Although some level of random ageing error is unavoidable, such error can often be corrected after the fact using statistical (' digital sharpening ') methods.
The chronological properties of otoliths are unparalleled in the animal world, allowing accurate estimates of age and growth at both the daily and the yearly scale. Based on the successes of calcified structures as environmental proxies in other taxa, it was logical that researchers should attempt to link otolith biochronologies with otolith chemistry. With the benefit of hindsight, this anticipation may have been naive. For instance, the concentrations of many elements are lower in the otolith than in corals, bivalves, seal teeth, or the other bony structures of fish, making them less than ideal for elemental analyses. Nevertheless, there is growing interest in the use of otolith chemistry as a natural tag of fish stocks. Such applications are directed at questions concerning fish populations rather than using the fish as a passive recorder of the ambient environment and do not rely upon any explicit relationship between environmental variables and otolith chemistry. The questions that can be addressed with otolith chemistry are not necessarily answerable with genetic studies, suggesting that genetic and otolith studies complement rather than compete with each other. Thus, we believe that otolith applications have the potential to revolutionize our understanding of the integrity of fish populations and the management of fish stocks.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.