Pharmacological strategies that boost intracellular NAD + are highly coveted for their therapeutic potential. One approach is activation of nicotinamide phosphoribosyltransferase (NAMPT) to increase production of nicotinamide mononucleotide (NMN), the predominant NAD + precursor in mammalian cells. A high-throughput screen for NAMPT activators and hit-to-lead campaign yielded SBI-797812, a compound that is structurally similar to active-site directed NAMPT inhibitors and blocks binding of these inhibitors to NAMPT. SBI-797812 shifts the NAMPT reaction equilibrium towards NMN formation, increases NAMPT affinity for ATP, stabilizes phosphorylated NAMPT at His247, promotes consumption of the pyrophosphate by-product, and blunts feedback inhibition by NAD + . These effects of SBI-797812 turn NAMPT into a “super catalyst” that more efficiently generates NMN. Treatment of cultured cells with SBI-797812 increases intracellular NMN and NAD + . Dosing of mice with SBI-797812 elevates liver NAD + . Small molecule NAMPT activators such as SBI-797812 are a pioneering approach to raise intracellular NAD + and realize its associated salutary effects.
Bacterial diheme peroxidases represent a diverse enzyme family with functions that range from hydrogen peroxide (H 2 O 2 ) reduction to post-translational modifications. By implementing a sequence similarity network (SSN) of the bCCP_MauG superfamily, we present the discovery of a unique diheme peroxidase BthA conserved in all Burkholderia . Using a combination of magnetic resonance, near-IR and Mössbauer spectroscopies and electrochemical methods, we report that BthA is capable of generating a bis- Fe(IV) species previously thought to be a unique feature of the diheme enzyme MauG. However, BthA is not MauG-like in that it catalytically converts H 2 O 2 to water, and a 1.54-Å resolution crystal structure reveals striking differences between BthA and other superfamily members, including the essential residues for both bis- Fe(IV) formation and H 2 O 2 turnover. Taken together, we find that BthA represents a previously undiscovered class of diheme enzymes, one that stabilizes a bis- Fe(IV) state and catalyzes H 2 O 2 turnover in a mechanistically distinct manner.
Proof of concept (POC) may be defined as the earliest point in the drug development process at which the weight of evidence suggests that it is "reasonably likely" that the key attributes for success are present and the key causes of failure are absent. POC is multidimensional but is focused on attributes that, if not addressed, represent a threat to the success of the project in crucial areas such as safety, efficacy, pharmaceutics, and commercial and regulatory issues. The appropriate weight of evidence is assessed through the use of mathematical models and by evaluating the consequences of advancing a candidate drug that is not safe, effective, or commercially viable, vs. failing to advance a candidate that possesses these attributes. Tools for POC include biomarkers, targeted populations, pharmacokinetic (PK)/pharmacodynamic (PD) modeling, simulation, and adaptive study designs. Challenges to the success of POCs include a shortage of skilled personnel, failure to integrate multiple disciplines and information, and the demand made by organizations for certainty.
Oxalate decarboxylase (OxDC) catalyzes the conversion of oxalate into formate and carbon dioxide in a remarkable reaction that requires manganese and dioxygen. Previous studies have shown that replacing an active-site loop segment Ser161-Glu162-Asn163-Ser164 in the N-terminal domain of OxDC with the cognate residues Asp161-Ala162-Ser-163-Asn164 of an evolutionarily related, Mn-dependent oxalate oxidase gives a chimeric variant (DASN) that exhibits significantly increased oxidase activity. The mechanistic basis for this change in activity has now been investigated using membrane inlet mass spectrometry (MIMS) and isotope effect (IE) measurements. Quantitative analysis of the reaction stoichiometry as a function of oxalate concentration, as determined by MIMS, suggests that the increased oxidase activity of the DASN OxDC variant is associated with only a small fraction of the enzyme molecules in solution. In addition, IE measurements show that C–C bond cleavage in the DASN OxDC variant proceeds via the same mechanism as in the wild-type enzyme, even though the Glu162 side chain is absent. Thus, replacement of the loop residues does not modulate the chemistry of the enzyme-bound Mn(II) ion. Taken together, these results raise the possibility that the observed oxidase activity of the DASN OxDC variant arises from an increased level of access of the solvent to the active site during catalysis, implying that the functional role of Glu162 is to control loop conformation. A 2.6 Å resolution X-ray crystal structure of a complex between oxalate and the Co(II)-substituted ΔE162 OxDC variant, in which Glu162 has been deleted from the active site loop, reveals the likely mode by which the substrate coordinates the catalytically active Mn ion prior to C–C bond cleavage. The “end-on” conformation of oxalate observed in the structure is consistent with the previously published V/K IE data and provides an empty coordination site for the dioxygen ligand that is thought to mediate the formation of Mn(III) for catalysis upon substrate binding.
The Wood–Ljungdahl pathway allows for autotrophic bacterial growth on carbon dioxide, with the last step in acetyl-CoA synthesis catalyzed by the bifunctional enzyme carbon monoxide dehydrogenase/acetyl-CoA synthase (CODH/ACS). ACS uses a complex Ni–Fe–S metallocluster termed the A-cluster to assemble acetyl-CoA from carbon monoxide, a methyl moiety and coenzyme A. Here, we report the crystal structure of CODH/ACS from Moorella thermoacetica with substrate carbon monoxide bound at the A-cluster, a state previously uncharacterized by crystallography. Direct structural characterization of this state highlights the role of second sphere residues and conformational dynamics in acetyl-CoA assembly, the biological equivalent of the Monsanto process.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.