Human serum transferrin (sTf) is a protein that mediates the transport of iron from blood to cells. Assisted by the synergistic anion carbonate sTf transports Fe(III) by binding the metal ion in a closed conformation. Previous studies suggest sTf’s role as a potential transporter of other metals like titanium. Ti is a widely used metal in colorants, foods, and implants. A substantial amount of Ti is leached into blood from these implants. However, the fate of the leached Ti and its transport into the cells is not known. Understanding Ti interaction with sTf assumes a greater significance with our ever increasing exposure to Ti in the form of implants. Based on in vitro studies it was speculated that transferrin can bind Ti(IV) assisted by a synergistic anion. However, the role and identity of the synergistic anion(s) and the conformational state in which sTf binds Ti(IV) are not known. Here we have solved the first X-ray crystal structure of a Ti(IV)-bound sTf. We find that sTf binds Ti(IV) in an open conformation with both carbonate and citrate as synergistic anions at the metal binding sites, an unprecedented role for citrate. Studies with cell lines suggest that Ti(IV)-sTf is transported into cells and that sTf and citrate regulate the metal’s blood speciation and attenuate its cytotoxic property. Our results provide the first glimpse into the citrate-transferrin synergism in the regulation of Ti(IV) bioactivity and offers insight into the future design of Ti(IV)-based anticancer drugs.
Infection by the fungal pathogen Cryptococcus neoformans causes lethal meningitis, primarily in immune-compromised individuals. Colonization of the brain by C. neoformans is dependent on copper (Cu) acquisition from the host, which drives critical virulence mechanisms. While C. neoformans Cu + import and virulence are dependent on the Ctr1 and Ctr4 proteins, little is known concerning extracellular Cu ligands that participate in this process. We identified a C. neoformans gene, BIM1 , strongly induced during Cu limitation and which encodes a protein related to Lytic Polysaccharide Monooxygenases (LPMOs). Surprisingly, bim1 mutants are Cu deficient and Bim1 function in Cu accumulation depends upon Cu 2+ coordination and cell surface association via a GPI anchor. Bim1 participates in Cu uptake in concert with Ctr1 and expression of this pathway drives brain colonization in mouse infection models. These studies demonstrate a new role for LPMO-like proteins as a critical factor for Cu acquisition in fungal meningitis.
The histidine-rich salivary peptides of the histatin family are known to bind copper (Cu) and other metal ions in vitro, but the details of these interactions are poorly understood and their implications on in vivo antifungal activity have not been established. Here, we show that availability of Cu during exposure of Candida albicans to histatin-5 (Hist-5) modulates its antifungal activity. Antifungal susceptibility testing revealed that co-treatment of Hist-5 with Cu improved the EC50 from ~5 µM to ~1 µM, whereas co-treatment with a high-affinity Cu-specific chelator abrogated antifungal activity. Spectrophotometric titrations revealed two previously unrecognized Cu(I) binding sites with apparent Kd values at pH 7.4 ~ 20 nM, and confirmed a high-affinity Cu(II) binding site at the Hist-5 N-terminus with apparent Kd ~ 8 pM. Evaluation of a series of His-to-Ala peptides containing the first 12 residues of Hist-5 identified adjacent His residues (bis-His) as critical anchors for Cu(I) binding, and the presence of a third ligand was revealed by X-ray absorption spectroscopy (XAS). On their own, the truncated peptides were ineffective at inhibiting growth of C. albicans, but treatment with supplemental Cu resulted in EC50 values down to ~ 5 µM, approaching that of full-length Hist-5. The efficacy of the peptides depended on an intact bis-His site and correlated with Cu(I) affinity. Together, these results establish new structure-function relationships linking specific histidine residues with Cu-binding affinity and antifungal activity, and provide further evidence for the involvement of metals in modulating the biological activity of these antifungal peptides.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.