Abstract-Wildlife may be exposed to mercury (Hg) and methylmercury (MeHg) from a variety of environmental sources, including mine tailings, industrial effluent, agricultural drainwater, impoundments, and atmospheric deposition from electric power generation. Terrestrial and aquatic wildlife may be at risk from exposure to waterborne Hg and MeHg. The transformation of inorganic Hg by anaerobic sediment microorganisms in the water column produces MeHg, which bioaccumulates at successive trophic levels in the food chain. If high trophic level feeders, such as piscivorous birds and mammals, ingest sufficient MeHg in prey and drinking water, Hg toxicoses, including damage to nervous, excretory and reproductive systems, result. Currently accepted no observed adverse effect levels (NOAELs) for waterborne Hg in wildlife have been developed from the piscivorous model in which most dietary Hg is in the methyl form. Such model are not applicable to omnivores, insectivores, and other potentially affected groups, and have not incorpotated data from other important matrices, such as eggs and muscle. The purpose of this paper is to present a comprehensive review of the Hg literature as it relates to effects on wildlife, including previously understudied groups. We present a critique of the current state of knowledge about effects of Hg on wildlife as an aid to identifying missing information and to planning research needed for conducting a complete assessment of Hg risks to wildlife. This review summarizes the toxicity of Hg to birds and mammals, the mechanisms of Hg toxicity, the measurement of Hg in biota, and interpretation of residue data.
Wildlife may be exposed to mercury (Hg) and methylmercury (MeHg) from a variety of environmental sources, including mine tailings, industrial effluent, agricultural drainwater, impoundments, and atmospheric deposition from electric power generation. Terrestrial and aquatic wildlife may be at risk from exposure to waterborne Hg and MeHg. The transformation of inorganic Hg by anaerobic sediment microorganisms in the water column produces MeHg, which bioaccumulates at successive trophic levels in the food chain. If high trophic level feeders, such as piscivorous birds and mammals, ingest sufficient MeHg in prey and drinking water, Hg toxicoses, including damage to nervous, excretory and reproductive systems, result. Currently accepted no observed adverse effect levels (NOAELs) for waterborne Hg in wildlife have been developed from the piscivorous model in which most dietary Hg is in the methyl form. Such model are not applicable to omnivores, insectivores, and other potentially affected groups, and have not incorpotated data from other important matrices, such as eggs and muscle. The purpose of this paper is to present a comprehensive review of the Hg literature as it relates to effects on wildlife, including previously understudied groups. We present a critique of the current state of knowledge about effects of Hg on wildlife as an aid to identifying missing information and to planning research needed for conducting a complete assessment of Hg risks to wildlife. This review summarizes the toxicity of Hg to birds and mammals, the mechanisms of Hg toxicity, the measurement of Hg in biota, and interpretation of residue data.
Bird eggs are commonly used in mercury monitoring programs to assess methylmercury contamination and toxicity to birds. However, only 6% of >200 studies investigating mercury in bird eggs have actually measured methylmercury concentrations in eggs. Instead, studies typically measure total mercury in eggs (both organic and inorganic forms of mercury), with the explicit assumption that total mercury concentrations in eggs are a reliable proxy for methylmercury concentrations in eggs. This assumption is rarely tested, but has important implications for assessing risk of mercury to birds. We conducted a detailed assessment of this assumption by (1) collecting original data to examine the relationship between total and methylmercury in eggs of two species, and (2) reviewing the published literature on mercury concentrations in bird eggs to examine whether the percentage of total mercury in the methylmercury form differed among species. Within American avocets (Recurvirostra americana) and Forster's terns (Sterna forsteri), methylmercury concentrations were highly correlated (R(2) = 0.99) with total mercury concentrations in individual eggs (range: 0.03-7.33 μg/g fww), and the regression slope (log scale) was not different from one (m = 0.992). The mean percentage of total mercury in the methylmercury form in eggs was 97% for American avocets (n = 30 eggs), 96% for Forster's terns (n = 30 eggs), and 96% among all 22 species of birds (n = 30 estimates of species means). The percentage of total mercury in the methylmercury form ranged from 63% to 116% among individual eggs and 82% to 111% among species means, but this variation was not related to total mercury concentrations in eggs, foraging guild, nor to a species life history strategy as characterized along the precocial to altricial spectrum. Our results support the use of total mercury concentrations to estimate methylmercury concentrations in bird eggs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.