The M2 protein from influenza A virus is a pH-activated proton channel that mediates acidification of the interior of viral particles entrapped in endosomes. M2 is the target of the anti-influenza drugs amantadine and rimantadine; recently, resistance to these drugs in humans, birds and pigs has reached more than 90% (ref. 1). Here we describe the crystal structure of the transmembrane-spanning region of the homotetrameric protein in the presence and absence of the channel-blocking drug amantadine. pH-dependent structural changes occur near a set of conserved His and Trp residues that are involved in proton gating. The drug-binding site is lined by residues that are mutated in amantadine-resistant viruses. Binding of amantadine physically occludes the pore, and might also perturb the pK(a) of the critical His residue. The structure provides a starting point for solving the problem of resistance to M2-channel blockers.
Pmel17 is a transmembrane protein that mediates the early steps in the formation of melanosomes, the subcellular organelles of melanocytes in which melanin pigments are synthesized and stored. In melanosome precursor organelles, proteolytic fragments of Pmel17 form insoluble, amyloid-like fibrils upon which melanins are deposited during melanosome maturation. The mechanism(s) by which Pmel17 becomes competent to form amyloid are not fully understood. To better understand how amyloid formation is regulated, we have defined the domains within Pmel17 that promote fibril formation in vitro. Using purified recombinant fragments of Pmel17, we show that two regions, an N-terminal domain of unknown structure and a downstream domain with homology to a polycystic kidney disease-1 repeat, efficiently form amyloid in vitro. Analyses of fibrils formed in melanocytes confirm that the polycystic kidney disease-1 domain forms at least part of the physiological amyloid core. Interestingly, this same domain is also required for the intracellular trafficking of Pmel17 to multivesicular compartments within which fibrils begin to form. Although a domain of imperfect repeats (RPT) is required for fibril formation in vivo and is a component of fibrils in melanosomes, RPT is not necessary for fibril formation in vitro and in isolation is unable to adopt an amyloid fold in a physiologically relevant time frame. These data define the structural core of Pmel17 amyloid, imply that the RPT domain plays a regulatory role in timing amyloid conversion, and suggest that fibril formation might be physically linked with multivesicular body sorting.
Steroidogenic acute regulatory protein (StAR) plays a critical role in steroidogenesis by enhancing the delivery of substrate cholesterol from the outer mitochondrial membrane to the cholesterol side chain cleavage enzyme system on the inner membrane. A recombinant StAR protein lacking the first N-terminal 62 amino acid residues that includes the mitochondrial targeting sequence was shown to stimulate the transfer of cholesterol and -sitosterol from liposomes to heat-treated mitochondria in a dose-, time-, and temperature-dependent manner. A recombinant mutant StAR protein that cannot stimulate steroidogenesis by isolated mitochondria did not promote sterol transfer. Unlike the more promiscuous lipid transfer protein, sterol carrier protein 2 (SCP 2 ), StAR did not stimulate phosphatidylcholine transfer in our assay system. The recombinant StAR protein increased cholesterol transfer to heattreated microsomes as well as to heat-and trypsintreated mitochondria. These observations demonstrate that StAR has sterol transfer activity, which may reflect an ability to enhance desorption of cholesterol from sterol-rich donor membranes. We suggest that the ability of StAR to promote sterol transfer explains its steroidogenic activity.
The lac operon is a model system for understanding how effector molecules regulate transcription and are necessary for allosteric transitions. The crystal structures of the lac repressor bound to inducer and anti-inducer molecules provide a model for how these small molecules can modulate repressor function. The structures of the apo repressor and the repressor bound to effector molecules are compared in atomic detail. All effectors examined here bind to the repressor in the same location and are anchored to the repressor through hydrogen bonds to several hydroxyl groups of the sugar ring. Inducer molecules form a more extensive hydrogen-bonding network compared to anti-inducers and neutral effector molecules. The structures of these effector molecules suggest that the O6 hydroxyl on the galactoside is essential for establishing a water-mediated hydrogen bonding network that bridges the N-terminal and C-terminal sub-domains. The altered hydrogen bonding can account in part for the different structural conformations of the repressor, and is vital for the allosteric transition.
Bacteriophage lambda has for many years been a model system for understanding mechanisms of gene regulation. A 'genetic switch' enables the phage to transition from lysogenic growth to lytic development when triggered by specific environmental conditions. The key component of the switch is the cI repressor, which binds to two sets of three operator sites on the lambda chromosome that are separated by about 2,400 base pairs (bp). A hallmark of the lambda system is the pairwise cooperativity of repressor binding. In the absence of detailed structural information, it has been difficult to understand fully how repressor molecules establish the cooperativity complex. Here we present the X-ray crystal structure of the intact lambda cI repressor dimer bound to a DNA operator site. The structure of the repressor, determined by multiple isomorphous replacement methods, reveals an unusual overall architecture that allows it to adopt a conformation that appears to facilitate pairwise cooperative binding to adjacent operator sites.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.