Stretchable electronic devices that maintain electrical function when subjected to stress or strain are useful for enabling new applications for electronics, such as wearable devices, human−machine interfaces, and components for soft robotics. Powering and communicating with these devices is a challenge. NFC (near-field communication) coils solve this challenge but only work efficiently when they are in close proximity to the device. Alternatively, electrical signals and power can arrive via physical connections between the stretchable device and an external source, such as a battery. The ability to create a robust physical and electrical connection between mechanically disparate components may enable new types of hybrid devices in which at least a portion is stretchable or deformable, such as hinges. This paper presents a simple method to make mechanical and electrical connections between elastomeric conductors and flexible (or rigid) conductors. The adhesion at the interface between these disparate materials arises from surface chemistry that forms strong covalent bonds. The utilization of liquid metals as the conductor provides stretchable interconnects between stretchable and non-stretchable electrical traces. The liquid metal can be printed or injected into vias to create interconnects. We characterized the mechanical and electrical properties of these hybrid devices to demonstrate the concept and identify geometric design criteria to maximize mechanical strength. The work here provides a simple and general strategy for creating mechanical and electrical connections that may find use in a variety of stretchable and soft electronic devices.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.