We used real-time polymerase chain reaction and culture to demonstrate persistent colonization of soils by Coccidioides immitis, an agent of valley fever, in Washington State linked to recent human infections and located outside the endemic range. Whole-genome sequencing confirmed genetic identity between isolates from soil and one of the case-patients.
Molecular approaches are now being developed to provide a more rapid and objective identification of fungi compared to traditional phenotypic methods. Ribosomal targets, especially the large-subunit RNA gene (D1-D2 region) and internal transcribed spacers 1 and 2 (ITS1 and ITS2 regions), have shown particular promise for the molecular identification of some fungi. We therefore conducted an assessment of these regions for the identification of 13 medically important Aspergillus species: Aspergillus candidus, Aspergillus (Eurotium) chevalieri, Aspergillus (Fennellia) flavipes, Aspergillus flavus, Aspergillus fumigatus, Aspergillus granulosus, Aspergillus (Emericella) nidulans, Aspergillus niger, Aspergillus restrictus, Aspergillus sydowii, Aspergillus terreus, Aspergillus ustus, and Aspergillus versicolor. The length of ribosomal regions could not be reliably used to differentiate among all Aspergillus species examined. DNA alignment and pairwise nucleotide comparisons demonstrated 91.9 to 99.6% interspecies sequence identities in the D1-D2 region, 57.4 to 98.1% in the ITS1 region, and 75.6 to 98.3% in the ITS2 region. Comparative analysis using GenBank reference data showed that 10 of the 13 species examined exhibited a <1-nucleotide divergence in the D1-D2 region from closely related but different species. In contrast, only 5 of the species examined exhibited a <1-nucleotide divergence from sibling species in their ITS1 or ITS2 sequences. Although the GenBank database currently lacks ITS sequence entries for some species, and major improvement in the quality and accuracy of GenBank entries is needed, current identification of medically important Aspergillus species using GenBank reference data seems more reliable using ITS query sequences than D1-D2 sequences, especially for the identification of closely related species.Aspergillus species are an increasingly important cause of invasive fungal infections in immunocompromised patients (31, 59). Unfortunately, there are few specific clinical signs of invasive aspergillosis and current methods for laboratory diagnosis are less than ideal, particularly in the early stages of the disease (8,49). Given the recent reports of reduced antifungal drug susceptibilities among some Aspergillus species (21, 26, 50), the timely and accurate identification of aspergilli to the species level has become especially important (10). Species identification is also important for epidemiological purposes and as a guide to clinical management (29,47,48).The current laboratory identification of Aspergillus species is based on macroscopic colonial and microscopic morphological characteristics (7,20,45). Over 180 different species in at least 16 subgeneric groups or sections can be distinguished (35,37,38), including approximately 30 species which are recognized as opportunistic pathogens of humans (7). Many clinical laboratories use traditional phenotypic methods of identification and can differentiate only the more common Aspergillus species; the delineation of less common species must b...
Specific oligonucleotide probes were developed to identify medically important fungi that display yeast-like morphology in vivo. Universal fungal primers ITS1 and ITS4, directed to the conserved regions of ribosomal DNA, were used to amplify DNA from Histoplasma capsulatum, Blastomyces dermatitidis, Coccidioides immitis, Paracoccidioides brasiliensis, Penicillium marneffei, Sporothrix schenckii, Cryptococcus neoformans, five Candida species, and Pneumocystis carinii. Specific oligonucleotide probes to identify these fungi, as well as a probe to detect all dimorphic, systemic pathogens, were developed. PCR amplicons were detected colorimetrically in an enzyme immunoassay format. The dimorphic probe hybridized with DNA from H. capsulatum, B. dermatitidis, C. immitis, P. brasiliensis, and P. marneffei but not with DNA from nondimorphic fungi. Specific probes for H. capsulatum, B. dermatitidis, C. immitis, P. brasiliensis, P. marneffei, S. schenckii, C. neoformans, and P. carinii hybridized with homologous but not heterologous DNA. Minor cross-reactivity was observed for the B. dermititidis probe used against C. immitis DNA and for the H. capsulatum probe used against Candida albicans DNA. However, the C. immitis probe did not cross-react with B. dermititidis DNA, nor did the dimorphic probe hybridize with C. albicans DNA. Therefore, these fungi could be differentiated by a process of elimination. In conclusion, probes developed to yeast-like pathogens were found to be highly specific and should prove to be useful in differentiating these organisms in the clinical setting.
These findings suggest the development of resistance to azole antifungals in A. fumigatus may be present where agricultural azoles are used in the USA.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.