Lentiviral vectors are efficient gene delivery vehicles suitable for delivering long-term transgene expression in various cell types. Engineering lentiviral vectors to have the capacity to transduce specific cell types is of great interest to advance the translation of lentiviral vectors towards the clinic. Here we provide an overview of innovative approaches to target lentiviral vectors to cells of the immune system. In this overview we distinguish between two types of lentiviral vector targeting strategies: 1) targeting of the vectors to specific cells by lentiviral vector surface modifications, and 2) targeting at the level of transgene transcription by insertion of tissue-specific promoters to drive transgene expression. It is clear that each strategy is of enormous value but ultimately combining these approaches may help reduce the effects of off-target expression and improve the efficiency and saftey of lentiviral vectors for gene therapy.
BackgroundDendritic cells (DCs) are antigen-presenting immune cells that interact with T cells and have been widely studied for vaccine applications. To achieve this, DCs can be manipulated by lentiviral vectors (LVs) to express antigens to stimulate the desired antigen-specific T cell response, which gives this approach great potential to fight diseases such as cancers, HIV, and autoimmune diseases. Previously we showed that LVs enveloped with an engineered Sindbis virus glycoprotein (SVGmu) could target DCs through a specific interaction with DC-SIGN, a surface molecule predominantly expressed by DCs. We hypothesized that SVGmu interacts with DC-SIGN in a mannose-dependent manner, and that an increase in high-mannose structures on the glycoprotein surface could result in higher targeting efficiencies of LVs towards DCs. It is known that 1-deoxymannojirimycin (DMJ) can inhibit mannosidase, which is an enzyme that removes high-mannose structures during the glycosylation process. Thus, we investigated the possibility of generating LVs with enhanced capability to modify DCs by supplying DMJ during vector production.ResultsThrough western blot analysis and binding tests, we were able to infer that binding of SVGmu to DC-SIGN is directly related to amount of high-mannose structures on SVGmu. We also found that the titer for the LV (FUGW/SVGmu) produced with DMJ against 293T.DCSIGN, a human cell line expressing the human DC-SIGN atnibody, was over four times higher than that of vector produced without DMJ. In addition, transduction of a human DC cell line, MUTZ-3, yielded a higher transduction efficiency for the LV produced with DMJ.ConclusionWe conclude that LVs produced under conditions with inhibited mannosidase activity can effectively modify cells displaying the DC-specific marker DC-SIGN. This study offers evidence to support the utilization of DMJ in producing LVs that are enhanced carriers for the development of DC-directed vaccines.
The development of a lentiviral system to deliver genes to specific cell types could improve the safety and the efficacy of gene delivery. Previously, we have developed an efficient method to target lentivectors to specific cells via an antibody-antigen interaction in vitro and in vivo. We report herein a targeted lentivector that harnesses the natural ligand-receptor recognition mechanism for targeted modification of c-KIT receptor-expressing cells. For targeting, we incorporate membrane-bound human stem cell factor (hSCF), and for fusion, a Sindbis virusderived fusogenic molecule (FM) onto the lentiviral surface. These engineered vectors can recognize cells expressing surface CD117, resulting in efficient targeted transduction of cells in a SCF-receptor dependent manner in vitro, and in vivo in xenografted mouse models. This study expands the ability of targeting lentivectors beyond antibody targets to include cell-specific surface receptors. Development of a high titer lentivector to receptor-specific cells is an attractive approach to restrict gene expression and could potentially ensure therapeutic effects in the desired cells while limiting side effects caused by gene expression in non-target cells.
Prioritizing genes for translation to therapeutics for common diseases has been challenging. Here, we propose an approach to identify drug targets with high probability of success by focusing on genes with both gain of function (GoF) and loss of function (LoF) mutations associated with opposing effects on phenotype (Bidirectional Effect Selected Targets, BEST). We find 98 BEST genes for a variety of indications. Drugs targeting those genes are 3.8-fold more likely to be approved than non-BEST genes. We focus on five genes (IGF1R, NPPC, NPR2, FGFR3, and SHOX) with evidence for bidirectional effects on stature. Rare protein-altering variants in those genes result in significantly increased risk for idiopathic short stature (ISS) (OR = 2.75, p = 3.99 × 10−8). Finally, using functional experiments, we demonstrate that adding an exogenous CNP analog (encoded by NPPC) rescues the phenotype, thus validating its potential as a therapeutic treatment for ISS. Our results show the value of looking for bidirectional effects to identify and validate drug targets.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.