Genomic technologies offer opportunities to gain a more global assessment of the health status of an organism through an understanding of the functional pathways that are responding to pollutant exposure. We have developed a 13,000 clone cDNA toxicogenomics microarray for Platichthys flesus, the European flounder (EU-GENIPOL Project). We aimed to distinguish the origins of flounder taken from six sampling sites of different pollution status in Northern Europe according to their hepatic gene expression profile using bioinformatic approaches. To determine which gene expression differences may relate to pollutant impact, we have completed complementary laboratory exposures of flounder to selected toxicants and determined the associated gene expression profiles. Using multivariate variable selection coupled with a statistical modelling procedure (GALGO) we can predict geographical site but the accuracy is limited to specific sites. The search space for a combination of genes that effectively predicts class membership is very large, however, by combining the signatures derived from acute laboratory exposure to individual chemicals to limit the search space, a very accurate model for classification of all the different environmental sites was achieved. The final model utilised the expression profiles of 16 clones and validation with a qPCR array comprising these genes correctly assigned the site of origin for fish obtained from three of the sites in an independent sampling. These data would imply that the gene expression fingerprints obtained with these arrays are primarily attributable to variations in chemical pollutant responses at the different sites, indicating their potential utility in environmental impact assessment.
Summary
Pallid sturgeon (Scaphirhynchus albus) captured in the Middle and Lower Mississippi River (i.e. below St. Louis, MO, USA) are morphologically very similar to shovelnose sturgeon (Scaphirhynchus platorynchus). Available empirical data are limited to a few studies based on low sample sizes from disjointed populations. Geneticists are currently searching for markers that will differentiate the two species, but the need for unequivocal species‐specific field characters remains. Continuation of commercial fishing for shovelnose sturgeon in some states necessitates an immediate means for accurate field identifications. Previous studies of lower basin river sturgeon classified individuals with simple morphometric character indices and interpreted intermediacy as interspecific hybridization. In this study, morphometric variation among Scaphirhynchus specimens from the Middle and Lower Mississippi River is examined for evidence of hybridization. Data are compared for large (>250‐mm standard length) hatchery‐reared and wild pallid specimens and wild shovelnose specimens. Specimens are compared using two morphometric character indices, two morphometric/meristic character indices and principal components analysis. Results indicate substantial morphological variation among pallid sturgeon below the mouth of the Missouri River. The amount of variation appears to decrease downstream in the Mississippi River. Sheared principal components analysis of morphometric data shows complete separation of shovelnose and pallid sturgeon specimens, whereas character indices indicate overlap. Both character indices and sheared principal components analysis demonstrate that pallid sturgeon in the Lower Mississippi River are morphologically more similar to shovelnose sturgeon than are pallids from the Upper Missouri River. This similarity, explained in previous studies as hybridization, may be the result of latitudinal morphometric variation and length‐at‐age differences between populations of the upper and lower extremes of the range.
Gut contents of shovelnose and pallid sturgeon from the lower and middle Mississippi River were obtained by colonic flushing, a safe and easily implemented alternative to gastric lavage. Diets of both species were dominated numerically by immature Trichoptera, Ephemeroptera, and Diptera. Primary prey, based on volume, for shovelnose sturgeon were Trichoptera, and for pallid sturgeon were various fishes. Geographic and seasonal nuances in diet were observed for both species, but the general dichotomy of shovelnose sturgeon as browser on invertebrates and pallid sturgeon as predator on fishes did not change. Data indicate that both species require hard substrates for feeding. Data demonstrate that colonic flushing is an effective technique for describing diet and inferring ecological and behavioral information about sturgeon.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.