The coronavirus disease 2019 (COVID-19) pandemic has greatly affected demand for imaging services, with marked reductions in demand for elective imaging and image-guided interventional procedures. To guide radiology planning and recovery from this unprecedented impact, three recovery models were developed to predict imaging volume over the course of the COVID-19 pandemic: (1) a long-term volume model with three scenarios based on prior disease outbreaks and other historical analogues, to aid in long-term planning when the pandemic was just beginning; (2) a short-term volume model based on the supply-demand approach, leveraging increasingly available COVID-19 data points to predict examination volume on a week-to-week basis; and (3) a next-wave model to estimate the impact from future COVID-19 surges. The authors present these models as techniques that can be used at any stage in an unpredictable pandemic timeline.
Limited resources and increased patient flow highlight the importance of optimizing healthcare operational systems to improve patient care. Accurate prediction of exam volumes, workflow surges and, most notably, patient delay and wait times are known to have significant impact on quality of care and patient satisfaction. The main objective of this work was to investigate the choice of different operational features to achieve (1) more accurate and concise process models and (2) more effective interventions. To exclude process modelling bias, data from four different workflows was considered, including a mix of walk-in, scheduled, and hybrid facilities. A total of 84 features were computed, based on previous literature and our independent work, all derivable from a typical Hospital Information System. The features were categorized by five subgroups: congestion, customer, resource, task and time features. Two models were used in the feature selection process: linear regression and random forest. Independent of workflow and the model used for selection, it was determined that congestion feature sets lead to models most predictive for operational processes, with a smaller number of predictors.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.