Abstract-GPUs are used to speed up many scientific computations; however, to use several networked GPUs concurrently, the programmer must explicitly partition work and transmit data between devices. We propose DistCL, a novel framework that distributes the execution of OpenCL kernels across a GPU cluster. DistCL makes multiple distributed compute devices appear to be a single compute device. DistCL abstracts and manages many of the challenges associated with distributing a kernel across multiple devices including: (1) partitioning work into smaller parts, (2) scheduling these parts across the network, (3) partitioning memory so that each part of memory is written to by at most one device, and (4) tracking and transferring these parts of memory. Converting an OpenCL application to DistCL is straightforward and requires little programmer effort. This makes it a powerful and valuable tool for exploring the distributed execution of OpenCL kernels. We compare DistCL to SnuCL, which also facilitates the distribution of OpenCL kernels. We also give some insights: distributed tasks favor more compute bound problems and favour large contiguous memory accesses. DistCL achieves a maximum speedup of 29.1 and average speedups of 7.3 when distributing kernels among 32 peers over an Infiniband cluster.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.