We present a coarse-grained molecular model of the surface of human hair, which consists of a supported lipid monolayer, in the MARTINI framework. Using coarse-grained molecular dynamics (MD) simulations, we...
We investigate the nanoscale friction between biomimetic hair surfaces using chemical colloidal probe atomic force microscopy experiments and nonequilibrium molecular dynamics simulations. In the experiments, friction is measured between water-lubricated...
Understanding the fundamental wetting behavior of liquids on surfaces with pores or cavities provides insights into the wetting phenomena associated with rough or patterned surfaces, such as skin and fabrics, as well as the development of everyday products such as ointments and paints, and industrial applications such as enhanced oil recovery and pitting during chemical mechanical polishing. We have studied, both experimentally and theoretically, the dynamics of the transitions from the unfilled/partially filled (Cassie-Baxter) wetting state to the fully filled (Wenzel) wetting state on intrinsically hydrophilic surfaces (intrinsic water contact angle <90°, where the Wenzel state is always the thermodynamically favorable state, while a temporary metastable Cassie-Baxter state can also exist) to determine the variables that control the rates of such transitions. We prepared silicon wafers with cylindrical cavities of different geometries and immersed them in bulk water. With bright-field and confocal fluorescence microscopy, we observed the details of, and the rates associated with, water penetration into the cavities from the bulk. We find that unconnected, reentrant cavities (i.e., cavities that open up below the surface) have the slowest cavity-filling rates, while connected or non-reentrant cavities undergo very rapid transitions. Using these unconnected, reentrant cavities, we identified the variables that affect cavity-filling rates: () the intrinsic contact angle, () the concentration of dissolved air in the bulk water phase (i.e., aeration), () the liquid volatility that determines the rate of capillary condensation inside the cavities, and () the presence of surfactants.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.