The chromatin remodeling amine oxidase lysine-specific demethylase 1 (LSD1) has become an attractive target for the design of specific inhibitors with therapeutic potential. We, and others, have described LSD1 inhibitors that have potential as antitumor agents. Many of the currently known LSD1 inhibitors are poor drug candidates, or are structurally based on the tranylcypromine backbone, thus increasing the potential for off-target effects mediated by other amine oxidases. We now describe a series of potent LSD1 inhibitors based on a novel 1,2,4-triazole scaffold; these inhibitors show a high degree of specificity for LSD1 in vitro, and cause increases in cellular histone 3 dimethyllysine 4 (H3K4me2), a gene transcription activating mark. Importantly, these inhibitors are not toxic to mammalian cells in vitro, and thus they may show utility in the treatment of epigenetically-based diseases where cell death is not a desired endpoint Figure 1. Structures of LSD1 inhibitors 1, verlindamycin 2, (bis)thioureas 3, amidoxime 4, cyclic peptide 5, N3-(2-chloro-6-phenoxybenzyl)-4H-1,2,4-triazole-3,5-diamine 6 and N3,N5-bis(2-methoxybenzyl)-1H-1,2,4-triazole-3,5-diamine 7.
Helicobacter pylori infection is the main risk factor for development of gastric cancer, the third leading cause of cancer death worldwide. H. pylori colonizes the human gastric mucosa and persists for decades. The inflammatory response is ineffective in clearing the infection, leading to disease progression that may result in gastric adenocarcinoma. We have shown that polyamines are regulators of the host response to H. pylori , and that spermine oxidase (SMOX), which metabolizes the polyamine spermine into spermidine plus H 2 O 2 , is associated with increased human gastric cancer risk. We now used a molecular approach to directly address the role of SMOX, and demonstrate that Smox -deficient mice exhibit significant reductions of gastric spermidine levels and H. pylori -induced inflammation. Proteomic analysis revealed that cancer was the most significantly altered functional pathway in Smox −/− gastric organoids. Moreover, there was also less DNA damage and β-catenin activation in H. pylori -infected Smox −/− mice or gastric organoids, compared to infected wild-type animals or gastroids. The link between SMOX and β-catenin activation was confirmed in human gastric organoids that were treated with a novel SMOX inhibitor. These findings indicate that SMOX promotes H. pylori -induced carcinogenesis by causing inflammation, DNA damage, and activation of β-catenin signaling.
BackgroundThe obesity pandemic is associated with multiple major health concerns. In addition to diet and lifestyle, there is increasing evidence that environmental exposures to chemicals known as obesogens also may promote obesity.ObjectivesWe investigated the massive environmental contamination resulting from the Deepwater Horizon (DWH) oil spill, including the use of the oil dispersant COREXIT in remediation efforts, to determine whether obesogens were released into the environment during this incident. We also sought to improve the sensitivity of obesogen detection methods in order to guide post-toxicological chemical assessments.MethodsPeroxisome proliferator–activated receptor gamma (PPARγ) transactivation assays were used to identify putative obesogens. Solid-phase extraction (SPE) was used to sub-fractionate the water-accommodated fraction generated by mixing COREXIT, cell culture media, and DWH oil (CWAF). Liquid chromatography–mass spectrometry (LC-MS) was used to identify components of fractionated CWAF. PPAR response element (PPRE) activity was measured in PPRE-luciferase transgenic mice. Ligand-binding assays were used to quantitate ligand affinity. Murine 3T3-L1 preadipocytes were used to assess adipogenic induction.ResultsSerum-free conditions greatly enhanced the sensitivity of PPARγ transactivation assays. CWAF and COREXIT had significant dose-dependent PPARγ transactivation activities. From SPE, the 50:50 water:ethanol volume fraction of CWAF contained this activity, and LC-MS indicated that major components of COREXIT contribute to PPARγ transactivation in the CWAF. Molecular modeling predicted several components of COREXIT might be PPARγ ligands. We classified dioctyl sodium sulfosuccinate (DOSS), a major component of COREXIT, as a probable obesogen by PPARγ transactivation assays, PPAR-driven luciferase induction in vivo, PPARγ binding assays (affinity comparable to pioglitazone and arachidonic acid), and in vitro murine adipocyte differentiation.ConclusionsWe conclude that DOSS is a putative obesogen worthy of further study, including epidemiological and clinical investigations into laxative prescriptions consisting of DOSS.CitationTemkin AM, Bowers RR, Magaletta ME, Holshouser S, Maggi A, Ciana P, Guillette LJ, Bowden JA, Kucklick JR, Baatz JE, Spyropoulos DD. 2016. Effects of crude oil/dispersant mixture and dispersant components on PPARγ activity in vitro and in vivo: identification of dioctyl sodium sulfosuccinate (DOSS; CAS #577-11-7) as a probable obesogen. Environ Health Perspect 124:112–119; http://dx.doi.org/10.1289/ehp.1409672
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.