Metallic film-coated porous silicon (PSi) has been reported as a lucrative surface-enhanced Raman scattering (SERS) substrate. The solution-based fabrication process is facile and easy; however, it requires additional reducing agent and extra chemical treatment, as well as hinders the suitability as a reproducible SERS substrate due to irregular hot spot generation via irregular deposition of metallic nanocrystallites. To address this issue, we report a unique one-step electronic beam (e-beam) physical vapor deposition (PVD) method to fabricate a consistent layer of gold (Au) nanofilm on PSi. Moreover, to achieve the best output as a SERS substrate, PSi prepared by electrochemical etching was used as template to generate an Au layer of irregular surface, offering the surface roughness feature of the PSi–Au thin film. Furthermore, to investigate the etching role and Au film thickness, Au-nanocrystallites of varying thickness (5, 7, and 10 nm) showing discrete surface morphology were characterized and evaluated for SERS effect using Rhodamine 6G (R6G). The SERS signal of R6G adsorbed on PSi–Au thin film showed a marked enhancement, around three-fold enhancement factor (EF), than the Si–Au thin film. The optimal SERS output was obtained for PSi–Au substrate of 7 nm Au film thickness. This study thus indicates that the SERS enhancement relies on the Au film thickness and the roughness feature of the PSi–Au substrate.
The addition of nanomaterials, such as graphene and graphene oxide, can improve the mechanical properties of hydroxyapatite (HA) nanocomposites (NCPs). However, both the dispersive state of the starting materials and the sintering process play central roles in improving the mechanical properties of the final HA NCPs. Herein, we studied the mechanical properties of a reduced graphene oxide (r-GO)/HA NCP, for which an ultra-high shear force was used to achieve a nano-sized mixture through the dispersion of r-GO. A low-temperature, short-duration spark plasma sintering (SPS) process was used to realize high-density, non-decomposing r-GO/HA NCPs with an improved fracture toughness of 97.8% via the addition of 0.5 wt.% r-GO. Greater quantities of r-GO improve the hardness and the fracture strength. The improved mechanical properties of r-GO/HA NCPs suggest their future applicability in biomedical engineering, including use as sintered bodies in dentistry, plasma spray-coatings for metal surfaces, and materials for 3D printing in orthopedics.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.