This study examines the coiling and uncoiling motions of a soft pneumatic actuator inspired by the awn tissue of Erodium cicutarium. These tissues have embedded cellulose fibers distributed in a tilted helical pattern, which induces hygroscopic coiling and uncoiling in response to the daily changes in ambient humidity. Such sophisticated motions can eventually "drill" the seed at the tip of awn tissue into the soil: a drill bit in the plant kingdom. Through finite element simulation and experimental testing, this study examines a soft pneumatic actuator that has a similar reinforcing fiber layout to the Erodium plant tissue. This actuator, in essence, is a thin-walled elastomeric cylinder covered by tilted helical Kevlar fibers. Upon internal pressurization, it can exhibit a coiling motion by a combination of simultaneous twisting, bending, and extension. Parametric analyses show that the coiling motion characteristics are directly related to the geometry of tilted helical fibers. Notably, a moderate tilt in the reinforcing helical fiber leads to many coils of small radius, while a significant tilt gives fewer coils of larger radius. The results of this study can offer guidelines for constructing plant-inspired robotic manipulators that can achieve complicated motions with simple designs.
Soft pneumatic actuators have become indispensable for many robotic applications due to their reliability, safety, and design flexibility. However, the currently available actuator designs can be challenging to fabricate, requiring labor-intensive and time-consuming processes like reinforcing fiber wrapping and elastomer curing. To address this issue, we propose to use simple-to-fabricate kirigami skins—plastic sleeves with carefully arranged slit cuts—to construct pneumatic actuators with pre-programmable motion capabilities. Such kirigami skin, wrapped outside a cylindrical balloon, can transform the volumetric expansion from pneumatic pressure into anisotropic stretching and shearing, creating a combination of axial extension and twisting in the actuator. Moreover, the kirigami skin exhibits out-of-plane buckling near the slit cut, which enables high stretchability. To capture such complex deformations, we formulate and experimentally validates a new kinematics model to uncover the linkage between the kirigami cutting pattern design and the actuator’s motion characteristics. This model uses a virtual fold and rigid-facet assumption to simplify the motion analysis without sacrificing accuracy. Moreover, we tested the pressure-stroke performance and elastoplastic behaviors of the kirigami-skinned actuator to establish an operation protocol for repeatable performance. Analytical and experimental parametric analysis shows that one can effectively pre-program the actuator’s motion performance, with considerable freedom, simply by adjusting the angle and length of the slit cuts. The results of this study can establish the design and analysis framework for a new family of kirigami-skinned pneumatic actuators for many robotic applications.
Soft pneumatic actuators have found many applications in robotics and adaptive structures. Traditionally, these actuators are constructed by wrapping layers of reinforcing helical fibers around an elastomeric tube. This approach is versatile and robust, but it suffers from a critical disadvantage: cumbersome fabrication procedures. Wrapping long helical filaments around a cylindrical tube requires expensive equipment or excessive manual labor. To address this issue, we propose a new approach towards designing and constructing pneumatic actuators by exploiting the principle of kirigami, the ancient art of paper cutting. More specifically, we use “kirigami skins” — plastic sleeves with carefully arranged slit cuts — to replace the reinforcing helical fibers. This paper presents an initial investigation on a set of linear extension actuators featuring kirigami skins with a uniform array of cross-shaped, orthogonal cuts. When under internal pressurization, the rectangular-shaped facets defined by these cuts can rotate and induce the desired extension motion. Through extensive experiments, we analyze the elastic and plastic deformations of these kirigami skins alone under tension. The results show strongly nonlinear behaviors involving both in-plane facet rotation the out-of-plane buckling. Such a deformation pattern offers valuable insights into the actuator’s performance under pressure. Moreover, both the deformation characteristics and actuation performance are “programmable” by tailoring the cut geometry. This study lays down the foundation for constructing more capable Kirigami-skinned soft actuators that can achieve sophisticated motions.
With growing interest for human space tourism in the twenty-first century, much attention has been directed to the robust engineering of Environmental Control and Life Support Systems in space habitats. The stable, reliable operation of such a habitat is partly achieved with an ability to recognize and predict faults. For these two purposes, a reinforcement learning adversarial agent (ReLAA) is utilized in this work. A ReLAA is trained with experimental data to actively recognize and predict faults. These capabilities are achieved by proposing actions that activate known faults in a system. Instead of issuing these harmful actions to the actual hardware, a digital twin of the mock space habitat is simulated to discover vulnerabilities that would lead to faulted operation. The methods developed in this work will allow for the discovery of damaging latent behavior, and the reduction of false positive and negative fault identification.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.