Genetic diversity is necessary for evolutionary response to changing environmental conditions such as those facing many threatened and endangered species. To investigate the relationship between genetic diversity and conservation status, we conducted a systematic, quantitative review of vertebrate microsatellite data published since 1990: we screened 5165 previously published articles and identified 1941 microsatellite datasets spanning 17,988 loci that characterized wild populations distributed among five vertebrate classes. We analyzed these data in the context of conservation by comparing empirical estimates of heterozygosity and allelic richness between threatened and non-threatened species. We found that both heterozygosity and allelic richness are reduced in threatened species, suggesting that inbreeding and drift are both effective at removing genetic diversity in endangered populations. We then considered the criteria typically used to rank species of conservation concern (including declining population size, species range extent, and the number of mature individuals) to determine which of these criteria are most effective at identifying genetically depauperate species. However, we found that the existing criteria failed to systematically identify populations with low genetic diversity. To rectify this, we suggest a novel approach for identifying species of conservation need by estimating the expected loss of genetic diversity. We then evaluated the efficacy of our new approach and found that it performs significantly better than the existing methods for identifying species that merit conservation concern in part because of reduced genetic diversity.
Pathogens currently threaten the existence of many amphibian species. In efforts to combat global declines, researchers have characterized the amphibian cutaneous microbiome as a resource for disease management. Characterization of microbial communities has become useful in studying the links between organismal health and the host microbiome. Hellbender salamanders (Cryptobranchus alleganiensis) provide an ideal system to explore the cutaneous microbiome as this species requires extensive conservation management across its range. In addition, the Ozark hellbender subspecies (Cryptobranchus alleganiensis bishopi) exhibits chronic wounds hypothesized to be caused by bacterial infections, whereas the eastern hellbender (Cryptobranchus alleganiensis alleganiensis) does not. We assessed the cutaneous bacterial microbiome of both subspecies at two locations in the state of Missouri, USA. Through 16S rRNA gene-based amplicon sequencing, we detected more than 1000 distinct operational taxonomic units (OTUs) in the cutaneous and environmental bacterial microbiome. Phylogenetic and abundance-based dissimilarity matrices identified differences in the bacterial communities between the two subspecies, but only the abundance-based dissimilarity matrix identified differences between wounds and healthy skin on Ozark hellbenders. The higher abundance of OTUs on Ozark wounds suggests that commensal bacteria present on the skin and environment may be opportunistically colonizing the wounds. This brief exploration of the hellbender cutaneous bacterial microbiome provides foundational support for future studies seeking to understand the hellbender cutaneous bacterial microbiome and the role of the bacterial microbiota on chronic wounds of Ozark hellbenders.
Rangewide studies of genetic parameters can elucidate patterns and processes that operate only over large geographic scales. Herein, we present a rangewide population genetic assessment of the eastern box turtle Terrapene c. carolina, a species that is in steep decline across its range. To inform conservation planning for this species, we address the hypothesis that disruptions to demographic and movement parameters associated with the decline of the eastern box turtle has resulted in distinctive genetic signatures in the form of low genetic diversity, high population structuring, and decreased gene flow. We used microsatellite genotype data from (n = 799) individuals from across the species range to perform two Bayesian population assignment approaches, two methods for comparing historical and contemporary migration among populations, an evaluation of isolation by distance, and a method for detecting barriers to gene flow. Both Bayesian methods of population assignment indicated that there are two populations rangewide, both of which have maintained high levels of genetic diversity (HO = 0.756). Evidence of isolation by distance was detected in this species at a spatial scale of 300 – 500 km, and the Appalachian Mountains were identified as the primary barrier to gene flow across the species range. We also found evidence for historical but not contemporary migration between populations. Our prediction of many, highly structured populations across the range was not supported. This may point to cryptic contemporary gene flow, which might in turn be explained by the presence of rare transients in populations. However these data may be influenced by historical signatures of genetic connectivity because individuals of this species can be long-lived.
Ranaviruses are significant pathogens of amphibians, reptiles, and fishes, contributing to mass mortality events worldwide. Despite an increasing focus on ranavirus ecology, our understanding of ranavirus transmission, especially among reptilian hosts, remains limited. For example, experimental evidence for oral transmission of the virus in chelonians is mixed. Consequently, vector-borne transmission has been hypothesized in terrestrial turtle species. To test this hypothesis, mosquitoes captured during a 2012/2013 ranavirus outbreak in box turtles from southwestern Indiana were pooled by genus and tested for ranavirus DNA using qPCR. Two of 30 pools tested positive for ranavirus. Additionally, an individual Aedes sp. mosquito observed engorging on a box turtle also tested positive for ranavirus. Although our approach does not rule out the possibility that the sequenced ranavirus was simply from virus in bloodmeal, it does suggests that mosquitoes may be involved in virus transmission as a mechanical or biological vector among ectothermic vertebrates. While additional studies are needed to elucidate the exact role of mosquitoes in ranavirus ecology, our study suggests that a greater focus on vector-borne transmission may be necessary to fully understand ranaviral disease dynamics in herpetofauna.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.