Abstract. Fires represent an air quality challenge because they are large, dynamic and transient sources of particulate matter and ozone precursors. Transported smoke can deteriorate air quality over large regions. Fire severity and frequency are likely to increase in the future, exacerbating an existing problem. Using the National Environmental Satellite, Data, and Information Service (NESDIS) Hazard Mapping System (HMS) smoke data for North America for the period 2007 to 2014, we examine a subset of fires that are confirmed to have produced sufficient smoke to warrant the initiation of a U.S. National Weather Service smoke forecast. We find that gridded HMS-analyzed fires are well correlated (r = 0.84) with emissions from the Global Fire Emissions Inventory Database 4s (GFED4s). We define a new metric, smoke hours, by linking observed smoke plumes to active fires using ensembles of forward trajectories. This work shows that the Southwest, Northwest, and Northwest Territories initiate the most air quality forecasts and produce more smoke than any other North American region by measure of the number of HYSPLIT points analyzed, the duration of those HYS-PLIT points, and the total number of smoke hours produced. The average number of days with smoke plumes overhead is largest over the north-central United States. Only Alaska, the Northwest, the Southwest, and Southeast United States regions produce the majority of smoke plumes observed over their own borders. This work moves a new dataset from a daily operational setting to a research context, and it demonstrates how changes to the frequency or intensity of fires in the western United States could impact other regions.
We investigate the influence of smoke on ozone (O3) abundances over the contiguous United States. Using colocated observations of particulate matter and the National Weather Service Hazard Mapping System smoke data, we identify summertime days between 2005 and 2014 that Environmental Protection Agency Air Quality System O3 monitors are influenced by smoke. We compare O3 mixing ratio distributions for smoke-free and smoke-impacted days for each monitor, while controlling for temperature. This analysis shows that (i) the mean O3 abundance measured on smoke-impacted days is higher than on smoke-free days, and (ii) the magnitude of the effect varies by location with a range of 3 to 36 ppbv. For each site, we present the percentage of days when the 8-h average O3 mixing ratio (MDA8) exceeds 75 ppbv and smoke is present. Smoke-impacted O3 mixing ratios are most elevated in locations with the highest emissions of nitrogen oxides. The Northeast corridor, Dallas, Houston, Atlanta, Birmingham, and Kansas City stand out as having smoke present 10-20% of the days when 8-h average O3 mixing ratios exceed 75 ppbv. Most U.S. cities maintain a similar proportion of smoke-impacted exceedance days when they are held against the new MDA8 limit of 70 ppbv.
Abstract. Fires represent an air quality challenge because they are large, dynamic and transient sources of particulate matter and ozone precursors. Transported smoke can deteriorate air quality over large regions. Fire severity and frequency are likely to increase in the future, exacerbating an existing problem. Using the National Environmental Satellite, Data and Information Service (NESDIS) Hazard Mapping System (HMS) smoke data for North America for the period 2007 to 2014, we examine 10 a subset of fires that are confirmed to have produced sufficient smoke to warrant the initiation of a U.S. National Weather Service smoke forecast. We find that gridded HMS analyzed fires are well correlated (r = 0.84) with emissions from the Global Fire Emissions Inventory Database 4s (GFED4s). We define a new metric, smoke hours, by linking observed smoke plumes to active fires using ensembles of forward trajectories. This work shows that the Southwest, Northwest, and Northwest Territories trigger the most air quality forecasts, and produce more smoke than any other North American region 15 by measure of the number of HYSPIT points analyzed, the duration of those HYSPLIT points, and the total number of smoke hours produced. The average number of days with smoke plumes overhead is largest over the north-central U.S. Only Alaska, the Northwest, the Southwest, and Southeast U.S. regions produce the majority of smoke plumes observed over their own borders. This work moves a new dataset from a daily operational setting to a research context, and it demonstrates how changes to the frequency or intensity of fires in the western U.S. could impact other regions. 20
This research contrasts the environmental conditions, meteorological drivers, and air quality impacts of human‐ and lightning‐ignited wildfires in the southeastern and western United States, the two continental U.S. regions with the most wildfire burn area. We use the Fire Program Analysis Wildfire Occurrence Data (FPA FOD) to determine wildfire abundance and ignition sources between 1992 and 2015. We investigate specific ecoregions within these two U.S. regions and find that in the majority of ecoregions, annual lightning‐ and human‐ignited wildfire burn area have similar relationships with key meteorological parameters. We investigate the fuel moisture values where wildfires occur segregated by ignition type and show that within a given ecoregion, the differences in median fuel moisture between ignition types are generally smaller than the differences between ecoregions. Our results suggest that annual wildfire burn area for human‐ and lightning‐ignited wildfires within a given ecoregion are modulated by environmental conditions, and climate change may similarly impact wildfires of both ignition types. Finally, we estimate fine particulate matter emissions for Fire Program Analysis Wildfire Occurrence Data wildfires using the Fire INventory from NCAR model framework. We show that emissions of fine particulate matter from human‐ignited wildfires is significant and of a similar total magnitude between the west and southeastern United States. Additionally, the west and southeast have a similar number of wildfires associated with National Weather Service air quality smoke forecasts.
Wildfires are a growing threat in the United States. At a population level, exposure to ambient wildfire smoke is known to be associated with severe asthma outcomes such as hospitalizations. However, little work has been done on subacute clinical asthma outcomes, especially in sensitive populations. This study retrospectively investigated associations between ambient wildfire smoke exposure and measures of lung function and asthma control, Forced Expiratory Volume in 1 Second (FEV1) and the Asthma Control Test (ACT) and Children's Asthma Control Test (CACT) test scores, during nonurgent clinic visits. The study population consisted of pediatric asthma patients (ages 4–21; n = 1,404 for FEV1 and n = 395 for ACT/CACT) at National Jewish Health, a respiratory referral hospital in Denver, Colorado, and therefore represents a more severe asthma phenotype than the general pediatric asthma population. Wildfire smoke‐related PM2.5 at patients' residential ZIP codes was characterized using satellite‐derived smoke polygons from NOAA's Hazard Mapping System combined with kriging of ground‐based U.S. EPA monitors. Mixed effect models were used to estimate associations between clinical outcomes and smoke PM2.5 exposure, controlling for known risk factors and confounders. Among older children aged 12–21 we found that wildfire PM2.5 was associated with lower FEV1 the next day but higher FEV1 the day after. We found no associations between wildfire PM2.5 and FEV1 in younger children or between wildfire PM2.5 and asthma control measured by the ACT/CACT in all ages. We speculate that rescue medication usage by older children may decrease respiratory symptoms caused by wildfire smoke.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.