[reaction: see text] On the basis of reaction rate data, we have proposed a new mechanism for the Baylis-Hillman reaction involving the formation of a hemiacetal intermediate. We have determined that the rate-determining step is second order in aldehyde and first order in DABCO and acrylate. We have shown that this mechanism is general to aryl aldehydes under polar, nonpolar, and protic conditions using both rate data and two isotope effect experiments.
In einem einfachen Mikroreaktor gelang die dreistufige Synthese von Ibuprofen unter Flussbedingungen. Durch die Entwicklung einer Synthese, bei der Überschüsse an Reaktanten und Nebenprodukten die folgenden Reaktionen nicht stören, wird die Isolierung und Reinigung von Zwischenstufen überflüssig.
Using reaction rate data collected in aprotic solvents, we have determined that the Baylis-Hillman rate-determining step is second order in aldehyde and first order in DABCO and acrylate. On the basis of these data, we have proposed a new mechanism involving a hemiacetal intermediate. The proposed mechanism was then supported using two different kinetic isotope experiments.
Creating one-pot synthetic routes is a challenge that is already spawning new chemistry, enzymes, materials, and mechanistic insight. Through one-pot reactions, the chemical products that add value to our lives can be produced with less waste and greater economic benefits. Within this Emerging Area, we describe models for designing one-pot reactions as well as advanced catalysts created to facilitate their realization.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.