SummaryThe Agrobacterium vacuum infiltration method has made it possible to transform Arabidopsis thaliana without plant tissue culture or regeneration. In the present study, this method was evaluated and a substantially modified transformation method was developed. The labor-intensive vacuum infiltration process was eliminated in favor of simple dipping of developing floral tissues into a solution containing Agrobacterium tumefaciens, 5% sucrose and 500 microliters per litre of surfactant Silwet L-77. Sucrose and surfactant were critical to the success of the floral dip method. Plants inoculated when numerous immature floral buds and few siliques were present produced transformed progeny at the highest rate. Plant tissue culture media, the hormone benzylamino purine and pH adjustment were unnecessary, and Agrobacterium could be applied to plants at a range of cell densities. Repeated application of Agrobacterium improved transformation rates and overall yield of transformants approximately twofold. Covering plants for 1 day to retain humidity after inoculation also raised transformation rates twofold. Multiple ecotypes were transformable by this method. The modified method should facilitate high-throughput transformation of Arabidopsis for efforts such as T-DNA gene tagging, positional cloning, or attempts at targeted gene replacement.
Gene-for-gene disease resistance typically includes a programmed cell death response known as the hypersensitive response (HR). The Arabidopsis thaliana dnd1 mutant was previously isolated as a line that failed to produce the HR in response to avirulent Pseudomonas syringae pathogens; plants homozygous for the recessive dnd1-1 mutation still carry out effective gene-for-gene resistance. The dnd1-1 mutation also causes constitutive systemic resistance and elevated levels of salicylic acid. In the present study, a positional cloning approach was used to isolate DND1. . By using a nahG transgene, we found that salicylic acid is required for the elevated resistance caused by the dnd1 mutation but that removal of salicylic acid did not completely eliminate the dwarf and loss-of-HR phenotypes of mutant dnd1 plants. A stop codon that would severely truncate the DND1 gene product was identified in the dnd1-1 allele. This demonstrates that broadspectrum disease resistance and inhibition of the HR can be activated in plants by disruption of a cyclic nucleotide-gated ion channel.
To determine if damage to foliage by biotic agents, including arthropods, fungi, bacteria and viral pathogens, universally downregulates the expression of genes involved in photosynthesis, we compared transcriptome data from microarray experiments after twenty two different forms of biotic damage on eight different plant species. Transcript levels of photosynthesis light reaction, carbon reduction cycle and pigment synthesis genes decreased regardless of the type of biotic attack. The corresponding upregulation of genes coding for the synthesis of jasmonic acid and those involved in the responses to salicylic acid and ethylene suggest that the downregulation of photosynthesis-related genes was part of a defence response. Analysis of the subcellular targeting of co-expressed gene clusters revealed that the transcript levels of 84% of the genes that carry a chloroplast targeting peptide sequence decreased. The majority of these downregulated genes shared common regulatory elements, such as G-box (CACGTG), T-box (ACTTTG) and SORLIP (GCCAC) motifs. Strong convergence in the response of transcription suggests that the universal downregulation of photosynthesis-related gene expression is an adaptive response to biotic attack. We hypothesize that slow turnover of many photosynthetic proteins allows plants to invest resources in immediate defence needs without debilitating near term losses in photosynthetic capacity.
Nodulation is the result of a mutualistic interaction between legumes and symbiotic soil bacteria (e.g. soybean [Glycine max] and Bradyrhizobium japonicum) initiated by the infection of plant root hair cells by the symbiont. Fewer than 20 plant genes involved in the nodulation process have been functionally characterized. Considering the complexity of the symbiosis, significantly more genes are likely involved. To identify genes involved in root hair cell infection, we performed a large-scale transcriptome analysis of B. japonicum-inoculated and mock-inoculated soybean root hairs using three different technologies: microarray hybridization, Illumina sequencing, and quantitative real-time reverse transcription-polymerase chain reaction. Together, a total of 1,973 soybean genes were differentially expressed with high significance during root hair infection, including orthologs of previously characterized root hair infection-related genes such as NFR5 and NIN. The regulation of 60 genes was confirmed by quantitative real-time reverse transcription-polymerase chain reaction. Our analysis also highlighted changes in the expression pattern of some homeologous and tandemly duplicated soybean genes, supporting their rapid specialization.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.