BackgroundCancer-associated fibroblasts (CAFs) are tumor-promoting and correlate with poor survival in many cancers, which has led to their emergence as potential therapeutic targets. However, effective methods to manipulate these cells clinically have yet to be developed.MethodsCAF accumulation and prognostic significance in head and neck cancer (oral, n = 260; oropharyngeal, n = 271), and colorectal cancer (n = 56) was analyzed using immunohistochemistry. Mechanisms regulating fibroblast-to-myofibroblast transdifferentiation were investigated in vitro using RNA interference/pharmacological inhibitors followed by polymerase chain reaction (PCR), immunoblotting, immunofluorescence, and functional assays. RNA sequencing/bioinformatics and immunohistochemistry were used to analyze NAD(P)H Oxidase-4 (NOX4) expression in different human tumors. NOX4’s role in CAF-mediated tumor progression was assessed in vitro, using CAFs from multiple tissues in Transwell and organotypic culture assays, and in vivo, using xenograft (n = 9–15 per group) and isograft (n = 6 per group) tumor models. All statistical tests were two-sided.ResultsPatients with moderate/high levels of myofibroblastic-CAF had a statistically significant decrease in cancer-specific survival rates in each cancer type analyzed (hazard ratios [HRs] = 1.69–7.25, 95% confidence intervals [CIs] = 1.11 to 31.30, log-rank P ≤ .01). Fibroblast-to-myofibroblast transdifferentiation was dependent on a delayed phase of intracellular reactive oxygen species, generated by NOX4, across different anatomical sites and differentiation stimuli. A statistically significant upregulation of NOX4 expression was found in multiple human cancers (P < .001), strongly correlating with myofibroblastic-CAFs (r = 0.65–0.91, adjusted P < .001). Genetic/pharmacological inhibition of NOX4 was found to revert the myofibroblastic-CAF phenotype ex vivo (54.3% decrease in α-smooth muscle actin [α-SMA], 95% CI = 10.6% to 80.9%, P = .009), prevent myofibroblastic-CAF accumulation in vivo (53.2%–79.0% decrease in α-SMA across different models, P ≤ .02) and slow tumor growth (30.6%–64.0% decrease across different models, P ≤ .04).ConclusionsThese data suggest that pharmacological inhibition of NOX4 may have broad applicability for stromal targeting across cancer types.
Cancer-associated fibroblasts (CAF) remain a poorly characterized, heterogeneous cell population. Here we characterized two previously described tumor-promoting CAF sub-types, smooth muscle actin (SMA)-positive myofibroblasts and senescent fibroblasts, identifying a novel link between the two. Analysis of CAF cultured ex vivo, showed that senescent CAF are predominantly SMA-positive; this was confirmed by immunochemistry in head & neck (HNSCC) and esophageal (EAC) cancers. In vitro, we found that fibroblasts induced to senesce develop molecular, ultrastructural and contractile features typical of myofibroblasts and this is dependent on canonical TGF-β signaling. Similar to TGF-β1-generated myofibroblasts, these cells secrete soluble factors that promote tumor cell motility. However, RNA-sequencing revealed significant transcriptomic differences between the two SMA-positive CAF groups, particularly in genes associated with extracellular matrix (ECM) deposition and organization, which differentially promote tumor cell invasion. Notably, second harmonic generation imaging and bioinformatic analysis of SMA-positive human HNSCC and EAC showed that collagen fiber organization correlates with poor prognosis, indicating that heterogeneity within the SMA-positive CAF population differentially impacts on survival. These results show that non-fibrogenic, SMA-positive myofibroblasts can be directly generated through induction of fibroblast senescence and suggest that senescence and myofibroblast differentiation are closely linked processes.
Background Metabolic changes in tumour cells are used in clinical imaging and may provide potential therapeutic targets. Human papillomavirus (HPV) status is important in classifying head and neck cancers (HNSCC), identifying a distinct clinical phenotype; metabolic differences between these HNSCC subtypes remain poorly understood. Methods We used RNA sequencing to classify the metabolic expression profiles of HPV +ve and HPV −ve HNSCC, performed a meta-analysis on FDG-PET imaging characteristics and correlated results with in vitro extracellular flux analysis of HPV −ve and HPV +ve HNSCC cell lines. The monocarboxylic acid transporter-1 (MCT1) was identified as a potential metabolic target and tested in functional assays. Results Specific metabolic profiles were associated with HPV status, not limited to carbohydrate metabolism. There was dominance of all energy pathways in HPV-negative disease, with elevated expression of genes associated with glycolysis and oxidative phosphorylation. In vitro analysis confirmed comparative increased rates of oxidative phosphorylation and glycolysis in HPV-negative cell lines. PET SUV(max) scores however were unable to reliably differentiate between HPV-positive and HPV-negative tumours. MCT1 expression was significantly increased in HPV-negative tumours, and inhibition suppressed tumour cell invasion, colony formation and promoted radiosensitivity. Conclusion HPV-positive and negative HNSCC have different metabolic profiles which may have potential therapeutic applications.
The integrin αvβ6 is up‐regulated in numerous carcinomas, where expression commonly correlates with poor prognosis. αvβ6 promotes tumour invasion, partly through regulation of proteases and cell migration, and is also the principal mechanism by which epithelial cells activate TGF‐β1; this latter function complicates therapeutic targeting of αvβ6, since TGF‐β1 has both tumour‐promoting and ‐suppressive effects. It is unclear how these different αvβ6 functions are linked; both require actin cytoskeletal reorganization, and it is suggested that tractive forces generated during cell migration activate TGF‐β1 by exerting mechanical tension on the ECM‐bound latent complex. We examined the functional relationship between cell invasion and TGF‐β1 activation in pancreatic ductal adenocarcinoma (PDAC) cells, and confirmed that both processes are αvβ6‐dependent. Surprisingly, we found that cellular functions could be biased towards either motility or TGF‐β1 activation depending on the presence or absence of epidermal growth factor receptor pathway substrate 8 (Eps8), a regulator of actin remodelling, endocytosis, and GTPase activation. Similar to αvβ6, we found that Eps8 was up‐regulated in >70% of PDACs. In complex with Abi1/Sos1, Eps8 regulated αvβ6‐dependent cell migration through activation of Rac1. Down‐regulation of Eps8, Sos1 or Rac1 suppressed cell movement, while simultaneously increasing αvβ6‐dependent TGF‐β1 activation. This latter effect was modulated through increased cell tension, regulated by Rho activation. Thus, the Eps8/Abi1/Sos1 tricomplex acts as a key molecular switch altering the balance between Rac1 and Rho activation; its presence or absence in PDAC cells modulates αvβ6‐dependent functions, resulting in a pro‐migratory (Rac1‐dependent) or a pro‐TGF‐β1 activation (Rho‐dependent) functional phenotype, respectively. © 2017 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of Pathological Society of Great Britain and Ireland.
Link to this article: http://journals.cambridge.org/abstract_S002221511200196XHow to cite this article: S J Frampton, M J A Ward, V S Sunkaraneni, H IsmailKoch, Z A Sheppard, R J Salib and P K Jain Guillotine versus dissection tonsillectomy: randomised, controlled trial. AbstractObjective: This trial aimed to compare the guillotine technique of tonsillectomy with 'cold steel' dissection, the current 'gold standard'.Design: A single centre, randomised, controlled trial. Methods: One hundred children aged 3 to 11 years who were listed for bilateral tonsillectomy were recruited. Patients had one tonsil removed by each technique, and were blinded to the side. The operative time, intraoperative blood loss, haemostasis requirement and post-operative pain scores were recorded and compared.Results: Operative time and intra-operative blood loss were both significantly less for the guillotine technique ( p < 0.001) and there was a significantly reduced haemostasis requirement ( p < 0.001). Pain was also less on the guillotine side ( p < 0.001). There were no tonsillar remnants or palatal trauma for either technique. There was no significant difference between techniques in the frequency of secondary haemorrhage. Conclusion:This study provides level Ib evidence that guillotine tonsillectomy in children with mobile tonsils is an effective and time-efficient procedure which produces less intra-operative blood loss and post-operative pain than cold steel dissection.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.