We report an IR-IR double resonance study of the structural landscape present in the Na(glucose) complex. Our experimental approach involves minimal modifications to a typical IR predissociation setup, and can be carried out via ion-dip or isomer-burning methods, providing additional flexibility to suit different experimental needs. In the current study, the single-laser IR predissociation spectrum of Na(glucose), which clearly indicates contributions from multiple structures, was experimentally disentangled to reveal the presence of three α-conformers and five β-conformers. Comparisons with calculations show that these eight conformations correspond to the lowest energy gas-phase structures with distinctive Na coordination. Graphical Abstract ᅟ.
We report the slow electron velocity map imaging spectroscopy of cryogenically cooled anthracene and fluoranthene radical anions, two similarly sized polycyclic aromatic hydrocarbon molecules. The results allow us to examine the lowest energy singlet and triplet states in the neutral molecules on equal footing from the anionic ground state. The analysis of the experimental spectra is aided by harmonic calculations and Franck-Condon simulations, which generally show good agreement with experimental values and spectra. The electron affinity of fluoranthene is measured to be 0.757(2) eV, which is larger than that of anthracene at 0.532(3) eV. The lowest energy triplet state in anthracene is observed at 1.872(3) eV above the singlet ground state, while that of fluoranthene is observed at 2.321(2) eV above its singlet ground state. Comparisons of experimental and calculated spectra show that in addition to the Franck-Condon active modes, there is a clear presence of vibrational modes that gain intensity via vibronic coupling in both the singlet and triplet states in both molecules. In addition, the triplet state generally exhibits increased vibronic coupling compared to the singlet state, with the fluoranthene triplet state exhibiting evidence of distortion from C symmetry.
A velocity map imaging (VMI) setup consisting of multiple electrodes with three adjustable voltage parameters, designed for slow electron velocity map imaging applications, is presented. The motivations for this design are discussed in terms of parameters that influence the VMI resolution and functionality. Particularly, this VMI has two tunable potentials used to adjust for optimal focus, yielding good VMI focus across a relatively large energy range. It also allows for larger interaction volumes without significant sacrifice to the resolution via a smaller electric gradient at the interaction region. All the electrodes in this VMI have the same dimensions for practicality and flexibility, allowing for relatively easy modifications to suit different experimental needs. We have coupled this VMI to a cryogenic ion trap mass spectrometer that has a flexible source design. The performance is demonstrated with the photoelectron spectra of S and CS. The latter has a long vibrational progression in the ground state, and the temperature dependence of the vibronic features is probed by changing the temperature of the ion trap.
We present the slow electron velocity map imaging spectroscopy of cryogenically cooled phenoxide, 1-naphthoxide, and 2-naphthoxide anions. The results allow us to examine the ground state and the lowest energy excited state in the corresponding neutral radicals. Care was taken to minimize autodetachment signals in the photoelectron spectra, allowing for more straightforward comparisons with Franck-Condon analyses. The ground states of these three aromatic oxide radicals all have the unpaired electron residing in a π orbital delocalized throughout the molecule. The electron affinity of 1-naphthoxy is measured to be 2.290(2) eV, while that of 2-naphthoxy is measured to be 2.404(2) eV, both of which are higher than that of the smaller phenoxy molecule at 2.253(1) eV. The first excited states have the unpaired electron residing in a more localized σ orbital, yielding measured term energies for the state of 1.237(2) eV in 1-naphthoxy and 1.068(1) eV in 2-naphthoxy, while that of phenoxy is lower at 0.952(1) eV. The calculated Franck-Condon spectra generally showed good agreement with the experimental spectra, yielding assignments of the more active vibrations in each electronic state. Significant autodetachment signals arising from dipole bound states near the ground states of all three radicals were observed in our efforts to avoid them, and comparably less autodetachment signals were observed near the excited states. Besides this type of non-Franck-Condon intensities in the photoelectron spectra, we also observed minor features arising due to vibronic coupling in the ground states of all three radicals.
We have measured the temperature dependence of the ClNO2 product yield in competition with hydrolysis following N2O5 uptake to aqueous NaCl solutions. For NaCl-D2O solutions spanning 0.0054 to 0.21 M, the ClNO2 product yield decreases on average by only 5% from 5 to 25 ˚C. Less reproducible measurements at 0.54 and 2.4 M NaCl also fall within this range. The ratio of the rate constants for chlorination and hydrolysis of N2O5 in D2O is determined to be 1147 ± 65 at 25 °C, favoring chlorination. An Arrhenius analysis reveals that the activation energy for hydrolysis is just 3.0 ± 1.8 kJ/mol larger than for chlorination. In combination with the measured pre-exponential ratio favoring chlorination of 419 (-215) (+542), we conclude that the strong preference of N2O5 to undergo chlorination over hydrolysis is driven by dynamic and entropic, rather than enthalpic, factors. Molecular dynamics simulations elucidate the distinct solvation between strongly hydrated Cl- and the hydrophobically solvated N2O5. Combining this molecular picture with the Arrhenius analysis implicates the role of water in mediating interactions between such distinctly solvated species and suggests a role for diffusion limitations on the chlorination reaction.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.