A simple, fast, and inexpensive method for the determination of pesticide residues in fruits and vegetables is introduced. The procedure involves initial single-phase extraction of 10 g sample with 10 mL acetonitrile, followed by liquid–liquid partitioning formed by addition of 4 g anhydrous MgSO4 plus 1 g NaCl. Removal of residual water and cleanup are performed simultaneously by using a rapid procedure called dispersive solid-phase extraction (dispersive-SPE), in which 150 mg anhydrous MgSO4 and 25 mg primary secondary amine (PSA) sorbent are simply mixed with 1 mL acetonitrile extract. The dispersive-SPE with PSA effectively removes many polar matrix components, such as organic acids, certain polar pigments, and sugars, to some extent from the food extracts. Gas chromatography/mass spectrometry (GC/MS) is then used for quantitative and confirmatory analysis of GC-amenable pesticides. Recoveries between 85 and 101% (mostly >95%) and repeatabilities typically <5% have been achieved for a wide range of fortified pesticides, including very polar and basic compounds such as methamidophos, acephate, omethoate, imazalil, and thiabendazole. Using this method, a single chemist can prepare a batch of 6 previously chopped samples in <30 min with approximately $1 (U.S.) of materials per sample.
A collaborative study was conducted to determine multiple pesticide residues in fruits and vegetables using a quick, simple, inexpensive, and effective sample preparation method followed by concurrent analysis with gas chromatography/mass spectrometry (GC/MS) and liquid chromatography/tandem mass spectrometry (LC/MS/MS). For short, the method is known as QuEChERS, which stands for quick, easy, cheap, effective, rugged, and safe. Twenty representative pesticides were fortified in 3 matrixes (grapes, lettuces, and oranges) at 3 duplicate levels unknown to the collaborators ranging from 10 to 1000 ng/g. Additionally, 8 incurred pesticide residues were determined. Thirteen laboratories from 7 countries provided results in the study, and a variety of different instruments were used by collaborators. The QuEChERS procedure simply entails 3 main steps: (1) a 15 g homogenized sample is weighed into a 50 mL centrifuge tube to which 15 mL acetonitrile containing 1 HOAc is added along with 6 g MgSO4 and 1.5 g NaOAc, and the tube is shaken and centrifuged; (2) a portion of the extract is mixed with 3 + 1 (w/w) MgSO4primary secondary amine sorbent (200 mg/mL extract) and centrifuged; and (3) the final extract is analyzed by GC/MS and LC/MS/MS. To detect residues <10 ng/g in GC/MS, large-volume injection of 8 L is typically needed, or the extract can be concentrated to 4 g/mL in toluene, in which case 2 L splitless injection is used. In the study, the averaged results for data from 713 laboratories (not using internal standardization) for the 18 blind duplicates at the 9 spiking levels in the 3 matrixes are as follows [%recovery and reproducibility relative standard deviation (RSDR, %)]: atrazine, 92 (18); azoxystrobin, 93 (15); bifenthrin, 90 (16); carbaryl, 96 (20); chlorothalonil, 70 (34); chlorpyrifos, 89 (25); cyprodinil, 89 (19); o, p-DDD, 89 (18); dichlorvos, 82 (21); endosulfan sulfate, 80 (27); imazalil, 77 (33); imidacloprid, 96 (16); linuron, 89 (19);methamidophos, 87 (17); methomyl, 96 (17); procymidone, 91 (20); pymetrozine, 69 (19); tebuconazole, 89 (15); tolylfluanid (in grapes and oranges), 68 (33); and trifluralin, 85 (20). For incurred pesticides, kresoxim-methyl (9.2 3.2 ng/g) and cyprodinil (112 18) were found in the grapes; permethrins (112 41), -cyhalothrin (58 11), and imidacloprid (12 2) were determined in the lettuces; and ethion (198 36), thiabendazole (53 8), and imazalil (13 4) were determined in the oranges. Chlorpyrifosmethyl (200 ng/g) was used as a quality control standard added during sample homogenization and yielded 86% recovery and 19% RSDR. Intralaboratory repeatabilities for the method averaged 9.8% RSD for all analytes. The results demonstrate that the method is fit-for- purpose to monitor many pesticide residues in fruits and vegetables, and the Study Director recommends that it be adopted Official First Action.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.