The lateral habenula (LHb) is activated by aversive stimuli and the omission of reward, inhibited by rewarding stimuli and is hyperactive in helpless rats—an animal model of depression. Here we test the hypothesis that congenital learned helpless (cLH) rats are more sensitive to decreases in reward size and/or less sensitive to increases in reward than wild-type (WT) control rats. Consistent with the hypothesis, we found that cLH rats were slower to switch preference between two responses after a small upshift in reward size on one of the responses but faster to switch their preference after a small downshift in reward size. cLH rats were also more risk-averse than WT rats—they chose a response delivering a constant amount of reward (“safe” response) more often than a response delivering a variable amount of reward (“risky” response) compared to WT rats. Interestingly, the level of bias toward negative events was associated with the rat's level of risk aversion when compared across individual rats. cLH rats also showed impaired appetitive Pavlovian conditioning but more accurate responding in a two-choice sensory discrimination task. These results are consistent with a negative learning bias and risk aversion in cLH rats, suggesting abnormal processing of rewarding and aversive events in the LHb of cLH rats.
The lateral habenula (LHb), a key regulator of monoaminergic brain regions, is activated by negatively-valenced events. Its hyperactivity is associated with depression. While enhanced excitatory input to the LHb has been linked to depression, little is known about inhibitory transmission. We discovered that GABA is co-released with its functional opponent, glutamate, from long-range basal ganglia inputs (which signal negative events) to limit LHb activity in rodents. At this synapse, the balance of GABA/glutamate signaling is shifted towards reduced GABA in a model of depression and increased GABA by antidepressant treatment. GABA and glutamate co-release therefore controls LHb activity, and regulation of this remarkable form of transmission may be important for determining the impact of negative life events on mood and behavior.
Summary
The lateral habenula (LHb) has recently been identified as a key regulator of the reward system by driving inhibition onto dopaminergic neurons. However, the nature and potential modulation of the major input to the LHb originating from the basal ganglia are poorly understood. Although the output of the basal ganglia is thought to be primarily inhibitory, here we show that transmission from the basal ganglia to the LHb is excitatory, glutamatergic and suppressed by serotonin. Behaviorally, activation of this pathway is aversive, consistent with its role as an ‘anti-reward’ signal. Our demonstration of an excitatory projection from the basal ganglia to the LHb explains how LHb-projecting basal ganglia neurons can have similar encoding properties as LHb neurons themselves. Our results also provide a link between ‘anti-reward’ excitatory synapses and serotonin, a neuromodulator implicated in depression.
The amygdala is important for determining the emotional significance of environmental stimuli. However, the degree to which appetitive and aversive stimuli are processed by the same or different neuronal circuits within the amygdala remains unclear. Here we show that neuronal activity during the expression of classically conditioned appetitive and aversive emotional responses is more similar than expected by chance, despite the different sensory modalities of the eliciting stimuli. We also found that the activity of a large number of cells (> 43%) was correlated with blood pressure, a measure of emotional arousal. Together, our results suggest that a substantial proportion of neuronal circuits within the amygdala can contribute to both appetitive and aversive emotional arousal.autonomic ͉ electrophysiology ͉ emotion ͉ fear ͉ Pavlovian conditioning
The neural mechanisms conferring reduced motivation, as observed in depressed individuals, is poorly understood. Here, we examine in rodents if reduced motivation to exert effort is controlled by transmission from the lateral habenula (LHb), a nucleus overactive in depressed-like states, to the rostromedial tegmental nucleus (RMTg), a nucleus that inhibits dopaminergic neurons. In an aversive test wherein immobility indicates loss of effort, LHb→RMTg transmission increased during transitions into immobility, driving LHb→RMTg increased immobility, and inhibiting LHb→RMTg produced the opposite effects. In an appetitive test, driving LHb→RMTg reduced the effort exerted to receive a reward, without affecting the reward's hedonic property. Notably, LHb→RMTg stimulation only affected specific aspects of these motor tasks, did not affect all motor tasks, and promoted avoidance, indicating that LHb→RMTg activity does not generally reduce movement but appears to carry a negative valence that reduces effort. These results indicate that LHb→RMTg activity controls the motivation to exert effort and may contribute to the reduced motivation in depression.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.