This work aimed to quantify any principal magnetic field (B0) inhomogeneity and changes in MR image geometric distortion with continuous linac gantry rotation on an Elekta Unity MR-linac. This situation occurs for around a second between treatment beams during current image guided radiotherapy treatment and would occur frequently in foreseeable real-time adaptive radiotherapy treatment. Pixel by pixel maps of B0 inhomogeneity were obtained via repeated high temporal resolution pulse sequences with the linac gantry static at 36 gantry angles spaced ten degrees apart, and in continuous rotation at both 1 and 2 rpm. Individual B0 maps were subtracted from average maps across all data and the residual peak to peak inhomogeneity was calculated for each. The bulk geometric shift and change in physical extent of a 10 cm diameter spherical flood phantom during continuous linac gantry rotation at 1 and 2 rpm was compared to the static gantry case for two pulse sequences: the real-time clinical monitoring bFFE sequence and a non-clinical EPI sequence, chosen for its susceptibility to geometric distortion. The peak to peak inhomogeneity in the deviation-from-average ppm maps, plotted against gantry angle with the gantry in continuous rotation at 1 and 2 rpm were negligibly different from equivalent data obtained with the gantry static. The real-time clinical monitoring pulse sequence was shown to give negligible geometric distortion during continuous gantry motion, whilst a non-clinical EPI sequence showed bulk shifts of the order of one pixel and gantry angle dependent changes in extent, demonstrating the sensitivity of the chosen method. MR imaging on the Elekta Unity MR-Linac with the gantry in continuous motion is negligibly different from the static gantry case with current clinical pulse sequences. Real-time tracking and treatment plan adaptation using MR images obtained with the linac gantry in motion is possible.
Background and purpose: Magnetic Resonance Imaging (MRI) is increasingly being used in radiotherapy (RT). However, geometric distortions are a known challenge of using MRI in RT. The aim of this study was to demonstrate feasibility of a national audit of MRI geometric distortions. This was achieved by assessing large field of view (FOV) MRI distortions on a number of scanners used clinically for RT. Materials and methods: MRI scans of a large FOV MRI geometric distortion phantom were acquired on 11 MRI scanners that are used clinically for RT in the UK. The mean and maximum distortions and variance between scanners were reported at different distances from the isocentre. Results: For a small FOV representing a brain (100-150 mm from isocentre) all distortions were < 2 mm except for the maximum distortion of one scanner. For a large FOV representing a head and neck/pelvis (200-250 mm from isocentre) mean distortions were < 2 mm except for one scanner, maximum distortions were > 10 mm in some cases. The variance between scanners was low and was found to increase with distance from isocentre. Conclusions: This study demonstrated feasibility of the technique to be repeated in a country wide geometric distortion audit of all MRI scanners used clinically for RT. Recommendations were made for performing such an audit and how to derive acceptable limits of distortion in such an audit.
MR-guided radiotherapy on hybrid MR-Linacs exploits the excellent soft-tissue contrast of MRI to deliver daily adaptive precision radiotherapy. Geometric fidelity and long-term stability of MRI components are essential, but their longitudinal performance under daily exposure to scattered ionizing radiation is unknown. We report on longitudinal stability of periodic MRI QA on eight clinical 1.5T MR-Linac systems. We provided measurement instructions for periodic MRI QA and received data from seven different centers within the Elekta MR-Linac consortium, which contributed data over acquisition periods ranging from 3–24 months. We tested B0 and B1 homogeneity using a 37 cm diameter cylindrical phantom, which was measured monthly in axial orientation, supplemented by quarterly sagittal and coronal acquisitions. We report average, standard deviation and peak-to-peak variation (99th-1st percentile) within a region of interest (ROI) of 35 cm diameter. Dependence of B0 on the gantry angle and gradient non-linearity were tested quarterly. We analyzed the longitudinal stability of selected metrics of the vendor-provided periodic image quality tests. We found high temporal stability of B0 and B1 measurements and good agreement between different MR-Linac systems. For all measurements, the standard deviation of B0 within the analyzed ROI was below 0.66/0.33/0.33 ppm for axial/sagittal/coronal orientation. The average standard deviation of the ratio between actual and nominal flip angle was 0.022/0.100/0.088 for axial/sagittal/coronal orientation. Systems exhibited distinctively different gantry angle dependencies of B0, with sensitivities of B0 to the gantry angle differing by factors of up to two between systems. Gradient non-linearity analysis yielded average radii of 172 and 242 mm for which 98% of the phantom markers had deviations below 1 and 2 mm, respectively. All analyzed periodic image quality tests were passed, but major events including a body coil replacement and ramp down were apparent in the time series. Overall we found very similar performance of the tested systems and our results could inform the implementation of MR imaging QA for MR-Linacs. While we found differences of the gantry angle dependence of B0 between systems, the high temporal stability found for all tests is a foundation for stereotactic radiotherapy and multi-center clinical trials involving quantitative MRI.
A precise, reproducible method for measuring ultrasound probe slice thickness has been developed for linear array ultrasound probes. The method used a custom built jig to draw the probe along the surface of a Gammex 403 phantom, with the image plane parallel to the filaments within the phantom. Still images at 0.5 mm intervals are saved for post-processing using in-house software. Slice thickness measurements with a precision of 0.1 mm are obtained. The method was shown to give reproducible estimates of probe slice thickness at several depths to within 0.4 mm during repeat tests. The method was able to provide information about the slice thickness of different sections of the probe face. It is expected that the method can quantify changes in probe performance due to lens wear or replacement over time that may elude both in-plane and in-air reverberation-based tests. A total of 18 linear probes were tested across eight centres, including six specialist vascular ultrasound centres.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.