Abstract-State Analysis is a methodology developed over the last decade for architecting, designing and documenting complex control systems. Although it was originally conceived for designing robotic spacecraft, recent applications include the design of control systems for large ground-based telescopes. The European Southern Observatory (ESO) began a project to design the European Extremely Large Telescope (E-ELT), which will require coordinated control of over a thousand articulated mirror segments. The designers are using State Analysis as a methodology and the Systems Modeling Language (SysML) as a modeling and documentation language in this task. To effectively apply the State Analysis methodology in this context it became necessary to provide ontological definitions of the concepts and relations in State Analysis and greater flexibility through a mapping of State Analysis into a practical extension of SysML. The ontology provides the formal basis for verifying compliance with State Analysis semantics including architectural constraints. The SysML extension provides the practical basis for applying the State Analysis methodology with SysML tools. This paper will discuss the method used to develop these formalisms (the ontology), the formalisms themselves, the mapping to SysML and approach to using these formalisms to specify a control system and enforce architectural constraints in a SysML model.
TX 75083-3836, U.S.A., fax 01-972-952-9435. AbstractEstimation of effective permeability at the reservoir scale has been a long standing challenge in carbonate fields. The carbonate depositional and diagenetic history can be quite complex, and this can lead to a permeability field which is quite difficult to characterize. Permeability in vuggy or fractured intervals can be dramatically different from the matrix permeability measured in core plugs. However realistic estimates of oil recovery, and optimized reservoir management requires good estimates of the reservoir permeability.In the Tengiz field, a giant carbonate reservoir in western Kazakhstan, a method has recently been developed to calculate apparent permeability (APERM) based on flow rate from production (PLT) logs. Incorporation of this flow calibrated apparent permeability into the static geologic earth model offers an elegant solution to the long-standing problem of how to best incorporate dynamic PLT data into a reservoir model. A reservoir model recently built using APERM resulted in a step change improvement over previous methods where only static log based permeability transforms were used to populate the earth model.Conventional log based permeability transforms are designed to characterize matrix permeability but not the excess permeability due to fractures & vuggy porosity common in carbonate reservoirs. The APERM method is used for both accurately characterizing total permeability (matrix + excess), and for identifying inaccurate permeability predictions in older wells with poor log quality or limited log data. The log based permeability predictions are more accurate in recent wells with modern logs, but hot streak identification and quantitative permeability estimation from static well logs is still problematic.The apparent permeability is calculated by solving Darcy's law on an interval basis, using as input our knowledge of flowing and static pressures, plus well, reservoir, and fluid properties.The method makes several simplifying assumptions, but the resulting errors are second order in nature, and the method offers improvements over using conventional static log based transform permeability. Application of the method is enhanced by the derivation of coarse scale zonal layer pressures with multi-rate PLTs. Accurate zonal layer pressures improve the accuracy of the permeability derivation. The apparent permeability from PLT is then used as a benchmark to adjust the transform permeability derived from static well logs using a variable multiplier. This technique has the advantage of preserving the original fine scale heterogeneities of the wireline logs, while calibrating their magnitudes. It also has the advantage of identifying higher permeability intervals from rapid changes in well inflow profile, that may not have been characterized by conventional (core plug and wireline) estimates.Recently a full field reservoir model for Tengiz Field has been constructed using APERM data and petrophysical rock types. Preliminary history match results ...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.