Modulation of aberrant cell cycle regulation is a potential therapeutic strategy applicable to a wide range of tumor types. JNJ-7706621 is a novel cell cycle inhibitor that showed potent inhibition of several cyclin-dependent kinases (CDK) and Aurora kinases and selectively blocked proliferation of tumor cells of various origins but was about 10-fold less effective at inhibiting normal human cell growth in vitro. In human cancer cells, treatment with JNJ-7706621 inhibited cell growth independent of p53, retinoblastoma, or P-glycoprotein status; activated apoptosis; and reduced colony formation. At low concentrations, JNJ-7706621 slowed the growth of cells and at higher concentrations induced cytotoxicity. Inhibition of CDK1 kinase activity, altered CDK1 phosphorylation status, and interference with downstream substrates such as retinoblastoma were also shown in human tumor cells following drug treatment. Flow cytometric analysis of DNA content showed that JNJ-7706621 delayed progression through G 1 and arrested the cell cycle at the G 2 -M phase. Additional cellular effects due to inhibition of Aurora kinases included endoreduplication and inhibition of histone H3 phosphorylation. In a human tumor xenograft model, several intermittent dosing schedules were identified that produced significant antitumor activity. There was a direct correlation between total cumulative dose given and antitumor effect regardless of the dosing schedule. These results show the therapeutic potential of this novel cell cycle inhibitor and support clinical evaluation of JNJ-7706621. (Cancer Res 2005; 65(19): 9038-46)
A series of 1-acyl-1H-[1,2,4]triazole-3,5-diamine analogues were synthesized as cyclin-dependent kinase (CDK) inhibitors. These compounds showed potent and selective CDK1 and CDK2 inhibitory activities and inhibited in vitro cellular proliferation in various human tumor cells. Representative compound 3b demonstrated in vivo efficacy in a human melanoma A375 xenograft model in nude mice.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.