Drawing on an enactivist perspective in order to gain insight into how spatial reasoning develops and can be fostered, this article describes a study of how children engaged in spatial reasoning as they learned to program LEGO Mindstorms EV3 robots. Digital technologies afforded multiple opportunities for accumulating experiences for developing spatial reasoning that are difficult to come by in other contexts. Our video-recorded observations of children (aged 9 to 10) suggest that Bruner's enactive-iconic-symbolic typology of representations develop simultaneously rather than sequentiallythe commonly held assumption. Furthermore, these same video observations provided insight into children's development of spatial reasoning through computer programming. Our findings have implications for how curriculum is designed and implemented in classrooms.
As we witness a push toward studying spatial reasoning as a principal component of mathematical competency and instruction in the twenty first century, we argue that enactivism, with its strong and explicit foci on the coupling of organism and environment, action as cognition, and sensory motor coordination provides an inclusive, expansive, apt, and fit framework. We illustrate the fit of enactivism as a theory of learning with data from an ongoing research project involving teachers and elementary-aged children's engagement in the design and assembly of motorized robots. We offer that spatial reasoning with its considerations of physical context, the dynamics of a body moving through space, sensorimotor coordination, and cognition, appears different from other conceptual competencies in mathematics. Specifically, we argue that learner engagements with diverse types of informationally 'dense' visuo-spatial interfaces (e.g., blueprints, programming icons, blocks, maps), as in the research study, afford some of the necessary experiences with/in a vast number of cases described by Varela et al. (1991) that enable the development of other mathematical competencies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.