As coastal populations increase every year, greater numbers of people and buildings to support them are left vulnerable to severe hazards associated with hurricanes, which have shown signs of increasing strength and frequency related to climate change. Community-level decision making is essential to adequately prepare populations for the risks associated with imminent hurricanes and to adapt buildings to be more resilient. This creates a need for state-of-the-art methods such as data-driven machine learning to predict the damage that buildings will experience during hurricanes and support decisions for community stakeholders. Previous research has attempted to proactively forecast hurricane damage using numerical frameworks for individual building archetypes or by incorporating a narrow spectrum of input features. The focus of this study is a novel machine learning framework trained on building, hazard, and geospatial data to hindcast damage from Hurricanes Harvey, Irma, Michael, and Laura, with the objective of forecasting expected damage from future hurricanes. Performance of different algorithms were investigated including k-nearest neighbors, decision tree, random forest, and gradient boosting trees algorithms. In predicting qualitative damage states, random forest outperforms other algorithms with 76% accuracy in the hindcast. Parametric studies identify which features contribute the most to accurate predictions and demonstrate that prediction accuracy increases linearly for this case study with additional reconnaissance data to train the model. Finally, a comparison is drawn between this model and the ability of Federal Emergency Management Agency’s Hazus Multi-Hazard Hurricane Model to estimate building-specific damage on the same hindcast set of buildings.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.