The particle size distribution of aerosols produced by electronic cigarettes was measured in an undiluted state by a spectral transmission procedure and after high dilution with an electrical mobility analyzer. The undiluted e-cigarette aerosols were found to have particle diameters of average mass in the 250-450 nm range and particle number concentrations in the 10(9) particles/cm(3) range. These measurements are comparable to those observed for tobacco burning cigarette smoke in prior studies and also measured in the current study with the spectral transmission method and with the electrical mobility procedure. Total particulate mass for the e-cigarettes calculated from the size distribution parameters measured by spectral transmission were in good agreement with replicate determinations of total particulate mass by gravimetric filter collection. In contrast, average particle diameters determined for e-cigarettes by the electrical mobility method are in the 50 nm range and total particulate masses calculated based on the suggested diameters are orders of magnitude smaller than those determined gravimetrically. This latter discrepancy, and the very small particle diameters observed, are believed to result from almost complete e-cigarette aerosol particle evaporation at the dilution levels and conditions of the electrical mobility analysis. A much smaller degree, ~20% by mass, of apparent particle evaporation was observed for tobacco burning cigarette smoke. The spectral transmission method is validated in the current study against measurements on tobacco burning cigarette smoke, which has been well characterized in prior studies, and is supported as yielding an accurate characterization of the e-cigarette aerosol particle size distribution.
SUMMARYThe relatively volatile nature of the particulate matter fraction of e-cigarette aerosols presents an experimental challenge with regard to particle size distribution measurements. This is particularly true for instruments requiring a high degree of aerosol dilution. This was illustrated in a previous study, where average particle diameters in the 10-50 nm range were determined by a high-dilution, electrical mobility method. Total particulate matter (TPM) masses calculated based on those diameters were orders of magnitude smaller than gravimetrically determined TPM. This discrepancy was believed to result from almost complete particle evaporation at the dilution levels of the electrical mobility analysis. The same study described a spectral transmission measurement of e-cigarette particle size in an undiluted state, and reported particles from 210-380 nm count median diameter. Observed particle number concentrations were in the 10 9 particles/cm 3 range. Additional particle size measurements described here also found e-cigarette particle size to be in the 260-320 nm count median diameter range. Cambridge filter pads have been used for decades to determine TPM yields of tobacco burning cigarettes, and collection of e-cigarette TPM by fibrous filters is predicted to be a highly efficient process over a wide range of filtration flow rates. The results presented in this work provide support for this hypothesis.Described here is a study in which e-cigarette aerosols were collected on Cambridge filters with adsorbent traps placed downstream in an effort to capture any material passing through the filter. Amounts of glycerin, propylene glycol, nicotine, and water were quantified on the filter and downstream trap. Glycerin, propylene glycol, and nicotine were effciently captured (> 98%) by the upstream Cambridge filter, and a correlation was observed between filtration efficiency and the partial vapor pressure of each component. The present analysis was largely inconclusive with regard to filter efficiency and particle-vapor partitioning of water. [Beitr. Tabakforsch. Int. 26 (2014) 183-190] KEYWORDS: Electronic cigarette, aerosol, particle size, filtration efficiency ZUSAMMENFASSUNG Die relativ flüchtige Natur der Partikelfraktion von EZigaretten-Aerosol stellt hinsichtlich der Messungen zur Partikelgrößenverteilung eine experimentelle Herausforderung dar. Dies gilt im besonderen Maße für Geräte, die einen hohen Grad der Aerosolverdünnung erfordern. Dies wurde in einer vorangegangenen Studie dargestellt, in der die mittleren Partikeldurchmesser im Bereich von RESUMELa nature relativement volatile de la fraction de matière particulaire dans les aérosols de cigarettes électroniques représente un défi expérimental concernant les méthodes pour mesurer la distribution des tailles de ces particules. Cela est particulièrement vrai pour les instruments nécessitant un haut degré de dilution des aérosols. Ceci a été illustré dans une étude précédente, où une méthode de mobilité électrique à dilution élevée a permis de...
Particle size distribution and number concentration measurements of mainstream cigarette smoke are reported for commercial cigarettes encompassing a broad range of design parameters. Measurements were made using a Cambustion DMS500 fast particulate spectrometer. Twenty-nine brand styles were evaluated using a 60-mL puff of 2-s duration taken once every 30 s. A subset of cigarettes was evaluated using additional smoking regimens to explore the influence of puff volume and filter ventilation blocking. The DMS500-derived particulate matter mass was compared with filter-collected mass to assess the reliability of the aerosol measurements. Under the 60-mL/2-s puffing condition, all puffs for all products were observed to exhibit count median diameters between 145 nm and 189 nm. Measured particle size was 12-22 nm smaller for a 60-mL puff relative to a 35-mL puff. Partial or complete filter ventilation blocking under the 60-mL/2-s puffing condition had a small effect on particle size. Some trends in particle size as a function of puff number and smoking regimen appear consistent with a tobacco-rod residence time/coagulation hypothesis; however, other observations suggest that smoke formation processes in addition to coagulation influence particle size. The DMS500 underestimates smoke particulate mass relative to gravimetric filter collection, indicating evaporation of cigarette smoke particulate matter within the instrument. Approximately 75% of the evaporated mass can be attributed to particulate phase water. Some data also suggest a possible underestimation of number concentration. This introduces a significant confounding bias in the measurements and limits the information on smoke formation that can be extracted.
The effect of Brownian coagulation on the particle size distribution of mainstream cigarette smoke subjected to conditions encountered in the mouth during human smoking has been examined experimentally and simulated with a numerical coagulation model. Smoke puffed into an artificial mouth was subjected to variable aging times and exhausted to a fast electrical mobility analyzer for particle size distribution measurement. The experimental results agreed well with the predictions of a sectional-based model of Brownian coagulation that allowed for the modeling of various continuous feed and fixed volume coagulation environments. Due to the steady input of fresh, smaller particles, particle growth during the filling of the mouth with smoke, a process intrinsic to the puffing maneuver, was significant but slower than that during fixed volume, static aging. Mouth hold times and initial smoke mass concentration were found to be strong determinants of the average particle size of smoke exiting the mouth into the respiratory tract during inhalation. The results also suggest that the smallest particles present in fresh smoke, those less than 0.1 µm diameter, are greatly reduced in number during the unavoidable mouth coagulation during puffing and virtually eliminated after 1 s of mouth hold.
High-efficiency particulate air (HEPA) filters are widely used to control particulate matter emissions from processes that involve management or treatment of radioactive materials. Section FC of the American Society of Mechanical Engineers AG-1 Code on Nuclear Air and Gas Treatment currently restricts media velocity to a maximum of 2.5 cm/sec in any application where this standard is invoked. There is some desire to eliminate or increase this media velocity limit. A concern is that increasing media velocity will result in higher emissions of ultrafine particles; thus, it is unlikely that higher media velocities will be allowed without data to demonstrate the effect of media velocity on removal of ultrafine particles. In this study, the performance of nuclear grade HEPA filters, with respect to filter efficiency and most penetrating particle size, was evaluated as a function of media velocity. Deep-pleat nuclear grade HEPA filters (31 cm x 31 cm x 29 cm) were evaluated at media velocities ranging from 2.0 to 4.5 cm/sec using a potassium chloride aerosol challenge having a particle size distribution centered near the HEPA filter most penetrating particle size. Filters were challenged under two distinct mass loading rate regimes through the use of or exclusion of a 3 microm aerodynamic diameter cut point cyclone. Filter efficiency and most penetrating particle size measurements were made throughout the duration of filter testing. Filter efficiency measured at the onset of aerosol challenge was noted to decrease with increasing media velocity, with values ranging from 99.999 to 99.977%. The filter most penetrating particle size recorded at the onset of testing was noted to decrease slightly as media velocity was increased and was typically in the range of 110-130 nm. Although additional testing is needed, these findings indicate that filters operating at media velocities up to 4.5 cm/sec will meet or exceed current filter efficiency requirements. Additionally, increased emission of ultrafine particles is seemingly negligible.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.